Acknowledgements

Primary Authors
Garrett Wong, Sr. Sustainability Analyst
Ariana Vito, Sustainability Analyst

Public Works Department
Dean Kubani, Chief Sustainability Officer & Assistant Director of Public Works
Shannon Parry, Sustainability Administrator
Ryan Kraemer, Street & Fleet Services
Jason Baer, Street & Fleet Services
Alex Parry, Architecture Services Division
David Wang, Architecture Services Division
Zach Pollard, Civil & Engineering Division
Allan Sheth, Civil & Engineering Division
Tad Banach, Facilities Maintenance Division

Planning & Community Development Department
Jing Yeo, Planning Manager
Francie Stefan, Mobility Division
Beth Rolandson, Mobility Division
Colleen Stoll, Mobility Division
Juan Carrero, Parking & Operations Division

Saul Portillo, Parking & Operations Division
Andrew Maximous, Traffic Management

City Council
Ted Winterer, Mayor
Gleam Davis, Mayor Pro Tem
Kevin McKeown
Sue Himmelrich
Pam O’Connor
Terry O’Day
Tony O’Day

Task Force on the Environment
Mark Gold, Chair
Erik Neandross
David Pettit
David Hertz
Garen Baghdasarian
Robert Lempert
Susan Mearns

Planning Commission
Nina Fresco, Chair
Amy Nancy Anderson
Jason Parry
Jennifer Kennedy
Leslie Lambert
Mario Fonda-Bonardi
Richard McKinnon

Other Organizations
AeroVironment
Austin Energy
City of Los Angeles
ChargePoint
EV Charging Solutions
EverCharge
NRG EVgo
Drive Clean Santa Monica
Climate Action Santa Monica
Southern California Association of Governments
UCLA Luskin Center for Innovation
Westside Cities Council of Governments
Table of Contents

List of Tables .. 6
List of Figures .. 6
List of Terms .. 7
Executive Summary .. 9
Background ... 12
 Benefits of EVs .. 12
 The EV Challenge .. 15
 Hierarchy of Mobility & Low-Carbon Living .. 17
EV Action Plan Vision ... 19
Purpose & Priorities of the EV Action Plan ... 20
The EV Landscape ... 21
 Local Policies, Plans, & Programs .. 23
 Funding and Resources .. 25
Charging in Santa Monica: Today and Tomorrow ... 32
 EV Ownership ... 32
 Public EV Charging Stations ... 33
 City EV Fleet .. 36

EV ACTION PLAN

Public Infrastructure: Modernize and expand public EV infrastructure to improve user experience and sustain operations ... 40

Private Charging: Increase EV Charging for Multi-Unit Dwellings (MUDs) and workplaces .. 54

Public Policy: Update EV parking policies and practices .. 66

Community Outreach: Develop EV outreach programs and resources 78

Putting the Plan to Work

 Funding the Plan .. 84
 Implementing the Plan ... 88
 Measuring Success .. 92

Conclusion ... 92

APPENDIX

Appendix I: Santa Monica Proposed EV Infrastructure Map .. 93
Appendix II: National & State EV Policies ... 94
Appendix III: MUD Case Studies and Best Practices for EV Charging 98
Appendix IV: ADA Requirements for EV Charging .. 102
Appendix V: Local EVSE Rebate Programs ... 103
Appendix VI: SCE Proposed EV Pilot Programs ... 104
Appendix VII: Draft EV Action Plan Public Comments .. 105

Resources ... 108
Tables & Figures

TABLES:

Table 1: EV and EVSE Programs and Funding Opportunities .. 28
Table 2: Registered EVs in Santa Monica .. 32
Table 3: Citywide EV Charging Station Inventory .. 33
Table 4: Existing Public Charging Stations ... 34
Table 5: 2017 Pending Installations of New Charging Stations ... 34
Table 6: Municipal EV Fleet and Charging Stations ... 36
Table 7: Proposed 5-Year Infrastructure Plan ... 42
Table 8: EV Charging Station Installation Costs for Existing Stations 42
Table 9: Analysis of Publicly Available EV Charging Rate .. 46
Table 10: Examples of Public EV Charging Rates .. 46
Table 11: Average Charging Station Usage .. 47
Table 12: Conceptual 3-yr Project Cost Estimates and Funding Sources 86
Table 13: Budgeted Funds .. 87
Table 14: Operating Costs ... 87
Table 15: Division & Department Acronyms .. 88
Table 16: Responsibilities Overview .. 89
Table 17: Implementation Timeframe ... 90-91

FIGURES:

Figure 1: Hierarchy of Mobility .. 8
Figure 2: Citywide Emissions by Sector .. 9
Figure 3: Predicted Cumulative EV Purchases in Santa Monica ... 12
Figure 4: Average Annual Vehicle Emissions in California .. 13
Figure 5: Cost Ranges for EV Charger Installation ... 16
Figure 6: California Hybrid and Electric Vehicle Market Share ... 22
Figure 7: EVSE Resources and Programs .. 31
Figure 8: 2011-2016 EV Purchases in Santa Monica .. 32
Figure 9: Existing and Pending Charging Stations ... 35
Figure 10: Existing & Proposed Curbside Charging Stations .. 37
Figure 11: Process for Establishing a Fee Schedule .. 45
Figure 12: Low Carbon Fuel Standard Credit Prices ... 47
Figure 13: Top MUDs with Residents Likely to Purchase EVs .. 55
Figure 14: Breakdown of Installation Costs for Level 2 EVSE .. 56
Figure 15: Curbside Charging Potential ... 62
Figure 16: Predicted Lost Meter Revenue from Free EV Parking .. 72
Figure 17: Property Owner Familiarity with EVs and Charging Infrastructure Needs 79
Figure 18: Property Owner Familiarity with EVSE Rebates and Subsidies 79
List of Terms

BEV: Battery electric vehicles use electric motors and motor controllers instead of internal combustion engines for propulsion.

Charge-ready (also known as EV-ready): The necessary electrical capacity has been installed in a garage or parking facility to support electric vehicle charging (typically 20-40 amps of available service for a level 2 station).

Cost-recovery: System capability to recover the costs associated with operating EV charging stations by charging a fee for the electricity provided (i.e. through an RFID or card reader attached to the charging station).

DC Fast Charging: Direct-current (DC) fast charging equipment, also called Level 3, requires 208/480 V AC three-phase input. It is the fastest charging option available. EVs equipped with either a CHAdeMo or SAEcombo DC fast charge receptacle can add 50 to 70 miles range in about 20 minutes.

EV: Electric vehicle, including plug-in hybrids and pure battery electric vehicles.

EVSE: Electric Vehicle Supply Equipment (also known as EV charging stations or EV chargers). This includes the charging station itself and all components required for the installation and use, such as: conductors, plugs, power outlets, wiring, ground connectors, etc.

Level 1: provides charging through a 120 volt (V) AC plug. Based on the battery type and vehicle, AC Level 1 charging requires 15-20 amps of service and adds about 2 to 5 miles of range per hour of charging time. Level 1 is the slowest and least-expensive charging option.

Level 2: provides charging through either a 240 V (typical in residential applications) or 208 V (typical in commercial applications) AC plug. Level 2 charging requires 20 to 100 amps of service (typically 20-40 amps) and adds about 10 to 20 miles of ranges per hour of charging time.

MUD: A multi-unit dwelling (also know as multi-family building), is a residential building consisting of three or more units.

OSE: City of Santa Monica Office of Sustainability & the Environment

PEV: Plug-in electric vehicle (includes pure battery electric and plug-in hybrid vehicles, known as PHEVs)

PHEV: A plug-in hybrid electric vehicle has both an electric motor that is battery powered and a gasoline engine

SCAG: Southern California Association of Governments.

SCE: Southern California Edison (Santa Monica’s electric utility provider)

ZEV: Zero-emissions vehicle
Figure 1: Mobility Framework

- **Mobility**
 - Reduce SOV Trips

- **Walking & Biking**
- **Transit**
- **Mobility Services**
- **Zero Emission Vehicles**
- **Non-ZEVs**

EV Action Plan
Shift to Zero Emission Vehicles
Executive Summary

Electric vehicles (EVs) are moving into the marketplace faster than ever before. With 64% of Santa Monica’s carbon footprint produced from the transportation sector, reducing vehicle emissions through electrification is needed to complement increased efficiency and active transportation.

The City’s plans and policies call for an integrated transportation strategy that supports walk- and bike-friendly neighborhoods, complete streets, and easy access to transit boulevards. Vehicle electrification works with these mobility strategies to also help reach community sustainability and emission reduction goals.

Achieving a meaningful shift in vehicle fuel will require an expanded EV charging network to meet charging needs. This will require an investment in charging infrastructure and policies to support the transition. The City can be a catalyst to increase EV use and can provide the essential components to reach those efforts.

Expanding EV charging facilities is a complex process involving many different players. With the anticipated increase in EV adoption, local governments have a call to action to support EV infrastructure expansion because they have jurisdiction over facilities that can be utilized for charging (e.g. public parking lots and on-street facilities). In addition, cities play a crucial role in providing essential infrastructure, coordinating stakeholders, and developing policies to support EV charging.

Santa Monica is well positioned to increase the proportion of electric vehicles in the City by making charging stations more readily available due to its environmentally progressive residents, business owners, and property owners. Providing additional public charging and facilitating private charging can enable those who have delayed purchasing EVs to make the switch.

The Electric Vehicle Action Plan (EVAP) is part of a greater mobility framework (Figure 1) that prioritizes walking, biking, and low-carbon transit. The City is
actively improving access to these priority transportation modes through the Bicycle Action Plan, Pedestrian Action Plan, and Downtown Community Plan.

For the trips that require vehicles, electric vehicles are the preferred option due to the immense air quality and greenhouse gas reduction benefits compared to fossil-fuel powered vehicles.

The EVAP includes a series of priorities, programs, and policy recommendations to make EV charging more accessible to existing and future EV drivers in Santa Monica. This plan was developed through a comprehensive review of existing municipal and state EV charging plans, academic studies, and industry collaboration and research.

The City commissioned the UCLA Luskin Center to analyze EV growth projections; demand for workplace, retail, and residential charging; curbside charging potential; and to provide recommendations for a pilot rebate program that targets residents of multi-unit dwellings (MUDs).

The EVAP seeks to expand the public charging infrastructure from 89 to approximately 300 chargers by 2020, with a long-term goal of 1,000 chargers by 2025. There is no rule of thumb for the right ratio of EVs to charging stations. Based on existing electrical constraints and the high number of multi-unit dwellings (MUDs) in Santa Monica, 300 is an ambitious yet feasible short-term goal.

By providing additional infrastructure, the EVAP aims to increase the percentage of EVs on the road from 2% to 15% by 2025. Replacing 13% (~9,000) of the fossil-fuel powered vehicles with EVs will save an estimated 26,000 metric tons of carbon dioxide.

EVAP priorities include: modernizing and expanding the existing network, providing incentives for property owners, siting public charging in or near multi-family residential neighborhoods, and creating outreach and incentive programs for EVs and charging.

By establishing a comprehensive and strategic approach, Santa Monica can transform and sustain its role as a leader in sustainable technologies, carbon emissions reductions, transit, shared mobility services, and pedestrian and bicycle mobility.
Reaching 15% (~10,000) EVs in Santa Monica will save 25,690 metric tons of greenhouse gas emissions per year.

These savings are equivalent to:

- 2,774 homes’ annual energy use
- 859,772 incandescent lamps switched to LEDs
- 2,890,739 gallons of gas consumed
- $4M spent on gas

Background

Benefits of EVs
Santa Monica recognizes the important role EVs play in reducing carbon emissions and cleaning the air. According to the American Lung Association’s (ALA) Clean Air Future study, health and climate costs caused by internal combustion engine vehicles totaled $37 billion across ten states in 2015.

The ALA study estimates that combined health and climate benefits from a 100% EV scenario in California could reach $13.5 billion by 2050. These benefits include:

- Fewer asthma attacks, lost work days, premature deaths, heart attacks and emergency room visits as the result of cleaner air
- Climate benefits linked to reduced costs to agriculture and the environment
- Reduced carbon emissions: EVs powered by electricity from the local grid produce 54% less lifetime carbon pollution than gasoline cars (Plug In America, 2016).
- Reduced emissions that generate ozone and particulate matter

In addition, there are significant economic benefits available to EV drivers, utility companies, and the local economy:

- Cheaper maintenance costs due to fewer parts (e.g. no engine or transmission)

Figure 3: 2011-2026 Predicted Cumulative EV Purchases in Santa Monica

Source: IHS Auto; Prepared by: UCLA Luskin Center for Innovation, May 2017
- Estimated fuel savings of more than $3,500 over the lifetime of the vehicle if gas prices fall to $2.50/gallon; savings will be closer to $9,000 if gas prices are $3.50/gallon (Plug In America, 2016)
- Savings from fuel costs and maintenance can be invested back into the local economy
- Greater proportion of off-peak energy sold, which can reduce rates for utility customers
- Potential load control such as vehicle-to-grid integration

Supporting EV adoption through the strategies outlined in this plan will enable Santa Monica to take advantage of these benefits.

Another study found that electric vehicles emit only 19.8% of the total heat emitted by conventional vehicles per mile (Li et al, 2015). Replacing conventional vehicles with EVs reduces the urban heat island effect, which can lower energy consumption of air conditioners and reduce carbon emissions.

EV Charging Basics

EV owners typically charge at home and, if offered, the workplace. If only one or neither of these options are available, drivers must rely on public charging infrastructure. This is difficult with current public charger availability in Santa Monica.

There are three levels of EV chargers, which charge at different rates depending on the voltage:

- **Level 1 chargers** (120V) are the slowest and least expensive option. They provide 2-5 miles of charge per hour of charging time.
- **Level 2 chargers** (240V) add about 10-20 miles of range per hour of charging time.
- **DC Fast chargers** or Level 3 chargers (480V) are the fastest charging option available and will add 50-70 miles of range in about 20-30 minutes.

![Figure 4: Average Annual Vehicle Emissions in California (Pounds of CO2e)](source: Department of Energy, Alternative Fuel Data Center)
The term “smart charger” refers to chargers with network connectivity. Features include user notifications when charging is complete, payment collection through an RFID or credit card reader, demand management, and maintenance alerts for station hosts. All of the City’s public chargers are currently “dumb chargers”, which lack the above capabilities.

Demand management refers to the management of the electrical load. Most smart charging stations are capable of managing electrical loads to prevent strain on the grid and mitigate peak demand charges. Peak demands are typically met by using fossil fueled power plants, which increase greenhouse gas emissions.

Santa Monica’s EV History
Santa Monica first installed EV chargers in the mid-90s and purchased some of the original versions of electric vehicles for its City fleet. Santa Monica residents have also been early adopters of electric vehicles and have been strong advocates for expanded EV charging infrastructure. Many residents would like to purchase electric vehicles but lack charging options — particularly those living in MUDs.

In 2016, Santa Monica committed to becoming a carbon neutral city by 2050 or sooner. In order to achieve this, the community will need to drastically reduce its use of fossil fuels by electrifying vehicle transportation, encourage active modes of transportation, and transit.

Walking and biking are the optimal forms of mobility, followed by transit and shared mobility services. For trips that still need to be made by vehicle, electrification is essential to achieving greenhouse gas reduction targets and cleaner air.

The City’s Role
Demand for electric vehicles is rising quickly in California cities due to a variety of factors:

- Decreased cost of EVs
- Increased driving range of EV batteries
- Rebates and tax credits
- Volatility of gas prices
- Increased make and model options
- Increased environmental awareness
- Increased availability of public chargers
- Increased installation of solar
- Additional benefits, i.e. HOV privileges, free metered parking

Santa Monica’s goal to expand electric vehicle adoption aligns with state and regional goals to reduce fossil fuel combustion and greenhouse gases. A series of new and upcoming funding opportunities at the federal, state, local, and utility level provide unprecedented
opportunities to expand the EV charging network in Santa Monica.

The City has several unique roles in facilitating EV infrastructure deployment and EV adoption:

- Procurement: Public charging stations and fleet vehicle purchases
- Regulatory: Permitting, building & zoning codes, electric utilities.
- Market Facilitation: Rebates & Incentives
- Ownership: Leveraging city owned property for public EV parking and charging, e.g. public parking lots and street parking
- Stakeholder engagement: residents, property owners, City staff, & utilities

The EV Challenge

As the City supported the proliferation of EVs within its own operations and throughout the community, Santa Monica has seen an increased demand for public charging stations and, in particular charging for residents who live in multi-unit dwellings (MUDs). Increasingly, competition for charging stations between City vehicles and resident vehicles has generated tension in the electric vehicle community. Limited road way and curb space for the many users creates competition that will be amplified by the necessary actions of designating EV charging spaces.

EV owners typically use private chargers if offered, but if not, they utilize the limited public charging facilities. Challenges are greatest for residents in MUDs because they often lack dedicated parking or adequate electrical capacity to support EV charging. Unsupportive landlords and prohibitive installation costs can be additional barriers. Challenges vary based on the size and ownership models of different MUDs. (See Appendix II: MUD Case Studies and Best Practices for EV Charging.)

Santa Monica’s existing public infrastructure is outdated and inadequate for the current and future demand of residents and City fleet vehicles. As EV charging develops, there is more demand on the grid, changing the overall power demand profile. Thus, smart grid systems will be needed to modify behavior change.

EV ownership requires thoughtful planning and investment in order to support regular charging needs. The electrical infrastructure of our buildings and our utility grid were not designed to handle additional electrical demand of EV charging today.

Supporting and maintaining the infrastructure also requires coordination amongst various City departments/divisions and other government entities responsible for providing energy. Upgrading infrastructure to support EV charging requires coordination with the utilities and can incur significant hidden costs in addition to the equipment and installation fees.
Cost of Charging Can Vary Greatly

Figure 5: Cost Ranges for EV Charger Installation

Cost estimates for EVSE equipment were obtained from the U.S. Department of Energy’s 2015 report, *Costs Associated with Non-Residential Electric Vehicle Supply Equipment*. Cost estimates for all other stages of installation were obtained from the UCLA Luskin Center for Innovation’s 2016 report, *Overcoming Barriers to Electric Vehicle Charging in Multi-unit Dwellings: A South Bay Case Study*.
Hierarchy of Mobility & Low-Carbon Living

Santa Monica is working to encourage people movement instead of car movement by creating a healthy connected city that enables safe and convenient walking, biking and transit use. The shift will also help reduce the number of traffic-related fatalities under Vision Zero.

Walking and biking are the optimal forms of mobility, followed by transit and shared mobility services, which can be powered by low-emission fuels or electric. Single-occupancy vehicles are the least preferred option as they contribute traffic and pollution.

Increasing active transportation and switching to electric vehicles from traditional fuel combustion vehicles benefits the environment by reducing “upstream emissions” and pollution. According to the American Lung Association, (ALA) “Passenger vehicles impact health through their tailpipe emissions and their fuel production process, or ‘upstream; emissions. Tailpipes emit harmful emissions that create ozone and particulate matter pollution, as well as greenhouse gases, which cause climate change” (ALA Clean Air Future 2016, pg. 8).

This EV Action Plan focuses on electrification of the personal vehicles that remain in use, which is one of many strategies the City is taking to reduce carbon emissions from the transportation sector.
What about the Big Blue Bus and other large vehicles?

The Big Blue Bus (BBB) has a strong commitment to sustainability. BBB became one of the country’s first municipal transit authorities to convert its fleet to renewable natural gas (RNG) in 2015. This type of fuel comes from non-fracked methane that is harvested from landfills and is rated 90% cleaner than diesel. This switch resulted in a 60% emissions reduction compared to the previous year.

The BBB is conducting an electrification feasibility study to eventually transition to an electrified fleet. The BBB may also be eligible to apply for SCE’s Electric Transit Make-Ready Program if the Transportation Electrification proposal is approved by the California Utilities Commission (Appendix VI).

Transit electrification requires extensive planning and is one of multiple pathways to achieve emissions reductions. The electrification of medium- to heavy-duty vehicles is an important part of wide scale emissions reductions, however the EVAP focuses primarily on light-duty passenger vehicles due to the vastly different charging requirements for medium- and heavy-duty electric vehicles.

The City’s Fleet Management Division is also reviewing options for electric and hybrid-electric fleet vehicles as they enter the marketplace.
Goal
300 smart charging ports by 2020

EV Action Plan Vision

We envision a wholly decarbonized transportation system in which people choose to walk, bicycle, and take transit, and when driving, choose electric vehicles. The City aims to support the electrification of mobility options with a sophisticated network of multi-modal public and private charging infrastructure. The network should be financially sustainable, provide equitable access, and synergize with modern technology.

The City aims to have a uniform public network of approximately 300 smart chargers by 2020. These stations will be strategically located throughout the city near residential neighborhoods, commercial areas, parks, libraries, and beach lots, among other facilities.

Comprehensive policy support, local promotional programs, and adequate charging infrastructure are three essential components of a robust EV network.

The purpose of this document is to provide a strategic vision and action plan that will implement policies, projects and programs accelerating the adoption of electric vehicles.
EV Action Plan Priorities

<table>
<thead>
<tr>
<th>Public Infrastructure: Modernize and expand public EV infrastructure to improve user experience and sustain operations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Charging: Increase EV Charging for Multi-Unit Dwellings (MUDs) and Workplaces.</td>
</tr>
<tr>
<td>Public Policy: Update parking policies and practices for efficient charging station use.</td>
</tr>
<tr>
<td>Community Outreach: Develop EV outreach programs and resources for residents and businesses.</td>
</tr>
</tbody>
</table>
Global EV sales more than doubled between 2014 to 2016. Countries including India, the U.K, France and Norway have pledged to phase out fossil-fuel powered vehicles in the coming decades. Volkswagen plans to invest $84 billion in electric cars and batteries and aims to bring 300 EV models to the global market by 2030.

Automakers such as Volvo, Lincoln, VW, Jaguar and Land Rover recently announced plans to electrify their entire fleet. Nationally, EV sales rose 37% in 2016 from the previous year (Raiper, 2017); however, as of November 2016, EVs accounted for less than 1% of all cars on the road (Sierra Club, 2016). In Santa Monica, EVs accounted for approximately 2% of all cars on the road. More than 50% of all EV sales in the U.S. occurred in California (Raiper, 2017).

In July 2016, the White House released a set of federal and private section actions to accelerate electric vehicle adoption in the U.S. As part of these federal actions, the Department of Energy (DOE) Loan Program Office (LPO) issued a supplement to its Title XVII Renewable Energy and Efficient Energy (REEE) Projects Solicitation, clarifying that certain electric vehicle (EV) charging facilities—including associated hardware and software— are now eligible to receive funds. The solicitation can provide up to $4.5 billion in loan guarantees to support innovative renewable energy and energy efficiency projects.

State legislation signed in recent years is supporting EV drivers through incentives, priority parking, and mandatory charge-ready requirements in new buildings. Local programs such as AltCar are raising
awareness and educating the community on EV policies, technologies, and the status of the EV industry.

Statewide EV charging has increased by more than 50% (California Energy Commission, 2016). As battery ranges increase and vehicle prices drop, more drivers are choosing plug-in hybrids or pure battery electric vehicles compared to non-plug-in hybrids. As of June 2017, EVs (PHEVs and BEVs) represented 4.8% of the State market share.

The introduction of lower cost, long-range EVs such as the Tesla Model 3, 2018 Nissan Leaf, and Chevy Bolt are expected to have a considerable impact on EV charging demand in Santa Monica. The California Air Resources Board is expecting an additional 20-25 BEVs with over 200 miles of 100% electric range in the next five years. These longer range EVs will likely mitigate range anxiety and lead to greater adoption.

In California, there are around 20 models of locally available EVs (including both PHEVs and BEVs), which is significantly higher than most states in the U.S. (Clean Technica, 2016). This number could increase to over 100 in the coming years as automakers such as General Motors, Ford, and Nissan announce the launch of new BEV and PHEV models.

Prices range from approximately $24,000 for a Mitsubishi i-MiEV to $140,000 for a Tesla Model X. Battery range starts at 59 miles per charge for the Mitsubishi i-Miev and reaches 289 miles for a Tesla Model X (Green Car Reports, 2016).

The State of California has several goals and supporting legislation that will continue to incentivize EV adoption:

- Reduce carbon intensity of vehicle fuels by 10% by 2020
- Increase EV ownership to 1.5M by 2025
- Increase EV sales to 15% of all vehicles sales by 2025
- Reduce greenhouse gas emissions 40% below 1990 levels by 2030

![Fig 6: California Hybrid and Electric Vehicle Market Share](image)

Source: California Auto Outlook, May 2017
Local EV Policies, Plans & Programs

Policies
Rent Control (2013): Amendment to Regulation 3201
In order to allow EV charging in rent-controlled apartment buildings, the Rent Control Board amended Regulation 3201 to create separate agreements for EV charging in long-term controlled or vacancy-controlled tenancies.

Additions to Chapter 8.106 of the Green Building Standards Code include requirements for multi-family dwellings and buildings of mixed-use occupancies to prepare for future EV charging. New electrical service panels installed in multi-family dwellings with parking facilities must include a load of ten kilowatts per five percent of the parking spaces provided.

Zoning Update (2015): New Development, Remodel or Expansion
Under the updated Zoning Code, all new development, including remodels or expansions, must have one charging station for every 25-49 parking spaces and two charging stations for 50-99 parking spaces. One additional charger is required for each additional 50 spaces. The update specifies location, design, and signage guidelines as follows:

- Signage shall be installed designating spaces with charging stations for electric vehicles only.
- If the parking spaces are not being used, a written request may be made to the Director for parking spaces for general usage for a specific time period.
- Charging stations and associated equipment or materials may not encroach on the minimum required clear areas from driveways, parking spaces, garages or maneuvering areas.
- Charging stations shall be installed adjacent to standard size parking spaces.
- Charging stations shall be adjacent to a designated parking space. In a Single-Unit dwelling project, the station may be in the rear half of the parcel if evidence is presented to the Director that the usage of the charging station will not block access to any additional parking spaces.

Other policies supporting EVs in Santa Monica
- Free charging at all parking structures and public EV charging stations
- Free metered parking
- Access to HOV lanes (State law)
- Lower electric rates for EV charging (utility – Southern California Edison)
- Free permits for EV charging stations
- Fleet procurement goals for alternative-fueled vehicles (including compressed and liquefied natural gas)
Adding EV charging infrastructure in Santa Monica supports existing goals outlined in the Sustainable City Plan, 15x15 Climate Action Plan, Downtown Community Plan, and the Land Use Circulation Element.

The Sustainable City Plan has goals to increase clean air vehicles as a percentage of total vehicle ownership annually and to increase the percentage of fleet vehicles operating on alternative fuels to 80% by 2020.

Santa Monica adopted a short-term 15x15 Climate Action Plan in 2013 with a goal to reduce citywide greenhouse gas emissions 15% below 1990 levels by 2015. Significant reductions in energy usage in the building and transportation sectors helped surpass this goal with a 20% reduction of emissions below 1990 levels.

Since 64% of city-wide emissions are still generated by the transportation sector, this represents a large opportunity to further reduce emissions through greater adoption of electric vehicles. The City is working with community and expert stakeholders to develop a new Climate Action and Adaptation Plan that will outline steps to create a carbon neutral city by 2050. EV adoption is secondary to increasing active transportation.

The Land Use Circulation Element (LUCE) identified the need for managing the number of new vehicle trips, proactively pursuing greenhouse gas reductions through fuel shift and active transportation. The LUCE is a key component of the City’s overarching Mobility Strategy, which aims to shift how people move around Santa Monica by making sustainable options more convenient and accessible.

The Downtown Community Plan (DCP) is guided by the LUCE vision for a thriving, mixed-use urban environment. The DCP prioritizes the pedestrian experience and a well-connected, efficient transportation network.

Santa Monica’s annual AltCar Conference and Expo began in 2005 and has grown each year, bringing together industry professionals and the public to discover new alternatives to energy and transportation. Conference participants can attend panel discussions with industry leaders and all Expo visitors have the opportunity to test drive a range of EV and fuel cell models.

Offering test drives has proven to be particularly effective at rising interest in purchasing EVs. A pre/post fair survey found that test ride participants were 76% “more likely” to consider buying an EV after the test drive (CA PEVC, 2016). A few month later, 15% had purchased one (55% saying the test drive was a “very important” part of the decision) and 94% had spread the word (Plug In America, 2016).
Funding & Resources

State Funding Opportunities
Cities and utility providers throughout California have developed programs to facilitate EV adoption through rebate programs, free charging station installations, time-of-use rates, and outreach.

In addition, the introduction of CalGreen code and Assembly Bill 1236 also assisted in the adoption of EVs by requiring new buildings to be EV charge ready. The bill required streamlining the permitting process to make it easier for prospective EV buyers to understand the administrative burden and the cost of installing EVSEs before purchasing an EV.

In October 2016, the U.S. government granted final approval of a $14.7B settlement against Volkswagen (VW) for equipping more than 500,000 diesel vehicles to cheat U.S. vehicle emissions tests in violation of the Clean Air Act. Volkswagen will spend $10 billion on vehicle buybacks and $4.7B to mitigate the pollution from these cars and invest in green vehicle technology.

California will receive $800M from the VW settlement to dedicate to EV investment plans, which will be approved by the California Air Resources Board. $200M will be allocated within 30 months of the settlement effective date (October 25, 2017). 35% of funds in California will go towards disadvantaged communities.

Volkswagen is required to invest in EV infrastructure to promote and advance the use of EVs; eligible activities also include outreach, education and investment in fleet vehicles. The Southern California region is expected to be eligible for a significant portion of this funding due to its large population, however specific regional funding amounts have yet to be determined.

The California Energy Commission (CEC) has also approved up to $200M for statewide charging installations as part of the Alternative and Renewable Fuel and Vehicle Technology Program, which supports sustainable transportation and greenhouse gas reductions goals. In April 2017, the CEC awarded a $15M grant to San Diego-based Center for Sustainable Energy to develop and implement an initiative to install EV charging stations statewide by creating financial incentive projects.

In May 2017, the California Air Resources Board (CARB) announced $6M in funding to implement a Financing Assistance Pilot Project for FY 2016-2017. The project is funded by the Low Carbon Transportation program and is intended to accelerate EV adoption among lower-income consumers.

The goal is to help improve access to affordable financing mechanisms, including a vehicle price buy-down coupled with a low interest loan to
qualified lower-income consumers to purchase advanced technology clean vehicles. The solicitation was open to federal, state, and local government entities through July 2017.

In September 2017, the approval of AB 134 appropriated $140M funds to the Clean Vehicle Rebate Project for the 2018-19 fiscal year. New funding sources will also be available under the Greenhouse Gas Reduction fund, which receives funding from the state’s recently extended cap-and-trade program.

Funding is also available under the Mobile Source Air Pollution Reduction Review Committee (MSRC) Clean Transportation Program. The program accelerates implementation of the SCAQMD’s 2016 Air Quality Management Plan. Cities and counties can direct MSRC funds toward zero and near-zero emission vehicles, charging infrastructure, and EVSE installations.

Utility Funding Opportunities

Southern California Edison (SCE), Santa Monica’s electrical utility provider, is supporting transportation electrification by offering programs like the Clean Fuel Reward. This program offers rebates to EV owners, making electric fueling more affordable through special EV charging rates, and increasing awareness of the benefits of electric transportation. SCE previously offered the Charge Ready pilot to increase charging infrastructure at multi-unit dwellings and commercial sites.

In January 2017, SCE submitted a proposal for a $570M Transportation Electrification program subject to approval from the California Public Utilities Commission (CPUC). The program aims to help grow the transportation electrification market over a five-year period for medium and heavy duty EVs and to help reach statewide greenhouse gas reduction goals. The proposal includes rate designs to incentivize EV adoption, a customer
rebate for residential charging station installations, and monetary rewards for ride service and taxi drivers who drive EVs. See Appendix VI for more details.

There are a number of funding resources for EV ownership and EVSE installation from the federal level down to the local utility. However, many of these resources are not well known and can be daunting for property owners and first-time EV buyers. Santa Monica aims to help guide residents through this process by creating a clearinghouse of information and resources (priority #4).

In the likely event that the City implements a Community Choice Aggregation (CCA) program, which allows Santa Monica to buy electricity generated by more renewables for the residents and businesses, there will additional opportunity to incentivize EVs.

For example, the Sonoma Clean Power CCA partner with EV and EV charger manufacturers to provide substantial incentives for their customers. Sonoma Clean Power is offering an additional $2,500 incentive to purchase Nissan Leafs and BMW i3s while funding lasts. Low-income customers can receive incentives up to $5,000 in addition to state and federal rebates.

Many of the existing resources are oriented toward property owners with adequate resources to deploy their own EV infrastructure. To date, there are minimal options for commercial and residential tenants who wish to install EVSE, but cannot due to insufficient electrical service capacity or dedicated spaces to charge. Lack of funding only makes matters more challenging.
<table>
<thead>
<tr>
<th>Administrator</th>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Air Resources Board</td>
<td>Clean Vehicle Rebate Project</td>
<td>Offers rebates of $1,500-$2,500 for purchasing or leasing zero-emission vehicles.</td>
</tr>
<tr>
<td>South Coast Air Quality Management District</td>
<td>Replace Your Ride Program</td>
<td>Offers incentives ranging from $2,500 up to $4,500 to replace old, polluting vehicles with cleaner vehicles, depending on income level and type of vehicle purchased.</td>
</tr>
<tr>
<td></td>
<td>Residential EV Charging Incentive Pilot Program</td>
<td>Provides up to $250 for the cost of hardware for Level 2 residential chargers. An additional incentive of up to $250 is available for low-income residents.</td>
</tr>
<tr>
<td></td>
<td>Mobile Source Air Pollution Reduction Review Committee (MSRC)</td>
<td>The Mobile Source Air Pollution Reduction Review Committee (MSRC) recently approved $21 million for cities and counties within the South Coast air district to invest in local clean vehicle, fuel and transportation projects through its new Local Government Partnership Program.</td>
</tr>
<tr>
<td>Southern California Edison</td>
<td>Clean Fuel Rewards Program</td>
<td>SCE offers a $450 purchase rebate for battery-electric vehicles and plug-in hybrid vehicles to all utility customers in its service territory. The rebate applies to new purchases and up to the third owner of a particular car. Funds come from the state’s Low Carbon Fuel Standard Program.</td>
</tr>
<tr>
<td>City and State Government</td>
<td>PACE Financing</td>
<td>A property tax assessment creates a loan to pay for EVSE equipment and installation costs that can be repaid over a fixed term. The EVSE and PACE loan becomes tied to the property.</td>
</tr>
<tr>
<td>California Energy Commission</td>
<td>California Capital Access Program (CalCAP) EV Charging Station Program</td>
<td>Offers EV infrastructure loans (up to $500,000) with up to 15% rebates for small business owners and commercial landlords who install electric vehicle charging stations for employees, clients or tenants.</td>
</tr>
<tr>
<td></td>
<td>Alternative and Renewable Fuel and Vehicle Technology Program</td>
<td>The CEC awarded a $15 million grant to the Center for Sustainable Energy to develop and implement an initiative to install more electric vehicle charging stations statewide by creating financial incentive projects. (2017)</td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>EV Charging & Solar Initiative</td>
<td>Provides free technical assistance to assess and secure EV charging stations and/or solar PV systems at workplaces, including non-profits, colleges, government, and private sector companies.</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>Electrify America</td>
<td>$800M over 10 yr investment in California covering 4 areas: (1) Installing charging infrastructure (approximately $120 million), (2) Building a Green City to showcase the benefits of ZEVs and promote increased ZEV usage (approximately $44 million), (3) Public Education initiatives (approximately $20 million), and (4) Access initiatives like ride-and-drive events.</td>
</tr>
</tbody>
</table>
Utility & Air District Programs

Southern California Edison Charge Ready Program
In 2016, Southern California Edison (SCE) launched a pilot program to fund infrastructure and rebates for 1,000-1,500 charging stations for multi-family, work, fleet, and destination charging. The pilot funded the installation of “make-ready” infrastructure and was offering rebates between 25% to 100% of the charging station costs. However, program eligibility requirements limited the ability of small and medium sites to participate in the program. In 2018, SCE will propose an additional program aimed at this sector.

San Francisco Bay Area Charge! Program
San Francisco’s Bay Area Air Quality Management District (BAAQMD) Charge! Program offered $5 million in grant funding for the installation of electric vehicle charging stations at Bay Area transportation corridors, workplaces, MUDs, and trip destination locations. The Transportation Fund for Clean Air funded this program and applications closed in January, 2016. The program was created to help meet the regional EV deployment goals of 110,000 EVs by 2020 and 247,000 EVs by 2025.

San Diego Gas & Electric Power Your Drive Program
San Diego Gas & Electric (SDG&E), launched a new pilot program, Power Your Drive, in early 2016. The California Public Utilities Commissions (CPUC) authorized SDG&E to install up to 3,500 EV charging stations in MUDs and businesses throughout its service area. A minimum of 10% of the stations will be located in disadvantaged communities. The program requires a minimum of 10 stations to be installed, similar to the SCE ChargeReady program. This minimum requirement may not be as large of a barrier in San Diego due to a lower population density and smaller percentage of MUDs compared to Santa Monica.
1.5 million zero-emission vehicles by 2025
Who Has Access?

Almost three-quarters of Santa Monicans are renters, according to the 2010 Census.

Access to resources and information are paramount if EV charging is to become an option for renters.

The following diagrams outlines which programs are available to residential and commercial property owners, EV drivers who rent their properties, and municipal funding options.

Targeted incentives and resources are necessary in order to reach the renter population.
Charging in Santa Monica: Today and Tomorrow

EV Ownership

EV ownership has increased steadily throughout the U.S., and particularly in California since 2010. California cities and towns represented approximately 65% of national EV sales in 2015, and this rate is expected to grow (ICCT, 2016).

In Santa Monica, there were 1,428 registered clean air vehicles in 2016 (including fleet vehicles), a drastic increase from the 63 clean air vehicles registered in 2003. Resident purchases of BEV and PHEVs in Santa Monica have increased 136% since 2012. Similar to the state level trends, BEV purchases in Santa Monica are growing at a faster rate than PHEVs (Figure 8). Cumulative PEV sales in Santa Monica are predicted to reach nearly 4,000 by 2021. With more than double the number of PEVs on the road expected by 2021, it is imperative for the City to provide more public charging stations.

The following numbers and charts reflect existing and predicted EV ownership and charging station inventory in Santa Monica.

Table 2: Registered EVs in Santa Monica (2016)

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug-In Hybrid Electric Vehicle</td>
<td>601</td>
</tr>
<tr>
<td>Battery Electric Vehicle</td>
<td>708</td>
</tr>
<tr>
<td>City-Owned Electric Vehicle</td>
<td>119</td>
</tr>
<tr>
<td>Total registered EVs</td>
<td>1,428</td>
</tr>
</tbody>
</table>

Figure 8: 2011-2016 EV Purchases in Santa Monica

Source: UCLA Luskin Center for Innovation, May 2017
Public EV Charging Stations

The City currently has 83 charging ports available at 64 charging stations (53 single-ports and 11 dual-ports). The majority of charging stations are located in City-owned parking structures and surface lots, and two charging stations are located on-street on Montana Ave. The dual-port chargers at the Civic Center Structure were provided by UCLA through a research project. All stations see a high amount of usage and staff regularly receives requests to add more charging stations.

All charging is currently provided to the public free of charge. Varying brands, models and vintages of EV charging equipment have been deployed, providing no consistency nor establishing any standard for maintenance. None of the existing EVSE have communications, remote monitoring/control or cost recovery capabilities. Due to the technology, staff does not have any metrics on usage, outages or cost, nor any means of enforcing turnover when parking or charging limits have been reached.

As of fall 2017, 34 new charging ports were pending at various parking lots and structures across Santa Monica at various stages of development. These chargers should be operational before the end of 2017. If all pending and requested stations are approved and installed, the City will operate a network of 133 charging ports by the end of 2017.

<table>
<thead>
<tr>
<th>Station Ownership</th>
<th>Total port connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>City-Owned Public</td>
<td>83</td>
</tr>
<tr>
<td>City Fleet-Use only</td>
<td>14</td>
</tr>
<tr>
<td>Commercial & Residential</td>
<td>227</td>
</tr>
<tr>
<td>Total</td>
<td>324</td>
</tr>
</tbody>
</table>

Table 3: Citywide EV Charging Station Inventory

Source: Nissan USA
Table 4: Existing Public Charging Stations

<table>
<thead>
<tr>
<th>Location</th>
<th>Street Address</th>
<th>Dual-port Stations</th>
<th>Single-port Stations</th>
<th>Total Available Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civic Solar Port</td>
<td>1685 Main St</td>
<td>-</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Civic Parking Structure</td>
<td>333 Civic Center Dr</td>
<td>7</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Santa Monica Pier</td>
<td>200 Santa Monica Pier</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Santa Monica Place</td>
<td>395 S Santa Monica Place</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>11th & Montana (curbside)</td>
<td>1101 Montana Blvd</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Virginia Avenue Park</td>
<td>2200 Virginia Ave (Pico Blvd side)</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Virginia Avenue Park</td>
<td>2200 Virginia Ave (Virginia Ave side)</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Santa Monica Airport</td>
<td>3223 Donald Douglas Loop South</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Parking Structure 6</td>
<td>1431 2nd St</td>
<td>4</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Lot 11</td>
<td>2501 Neilson Way</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Lot 9</td>
<td>2901 Neilson Way</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Parking Structure 9*</td>
<td>1136 4th St</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>5th Street Lot</td>
<td>5th & Santa Monica</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
<td>53</td>
<td>89</td>
</tr>
</tbody>
</table>

*Parking Structure 9 stations will be operational by end of Nov. 2017

Table 5: 2017 Pending Installations of New Charging Stations

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Dual-port Stations</th>
<th>Total Available Ports</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Lot 7</td>
<td>1217 Euclid St</td>
<td>2</td>
<td>4</td>
<td>In design</td>
</tr>
<tr>
<td>Parking Lot 8</td>
<td>1146 16th St</td>
<td>1</td>
<td>2</td>
<td>In design</td>
</tr>
<tr>
<td>Parking Lot 9</td>
<td>2725 Neilson Way</td>
<td>3</td>
<td>6</td>
<td>In design</td>
</tr>
<tr>
<td>Parking Lot 10</td>
<td>2675 Neilson Way</td>
<td>1</td>
<td>2</td>
<td>In design</td>
</tr>
<tr>
<td>Parking Lot 26</td>
<td>2303 Neilson Way</td>
<td>1</td>
<td>2</td>
<td>In design</td>
</tr>
<tr>
<td>Main Library</td>
<td>601 Santa Monica Blvd</td>
<td>6</td>
<td>12</td>
<td>In design</td>
</tr>
<tr>
<td>Annenberg Beach House</td>
<td>415 Pacific Coast Hwy</td>
<td>1</td>
<td>2</td>
<td>In design</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Figure 9: Existing and Pending Charging Stations
City Fleet Charging
The City currently owns 119 fleet EVs and nine dedicated charging stations (14 total connections). All fleet-only charging stations are located at the City Yards. Based on existing and anticipated fleet parking demand, charging stations for fleet vehicles are planned at the following municipal locations shown in Table 6.

Currently, City fleet vehicles share public charging infrastructure. This has created increased demand and tension for EV drivers who rely on the chargers for their private vehicles. Providing dedicated charging for City fleet vehicles will help to alleviate this conflict.

Table 6: Municipal EV Fleet and Charging Stations

<table>
<thead>
<tr>
<th>Office/Parking Location</th>
<th>Existing</th>
<th>EVs to Procured by Fiscal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chargers</td>
<td>15/16</td>
</tr>
<tr>
<td>1212 5th St</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1437 4th St</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Airport</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Arcadia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cemetery</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>City Yards</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Civic Parking Lot</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Civic Parking Structure</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Clover Park</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Colorado Yards</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Main Library</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Structure #1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Structure #3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure #6</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>Pier</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Public Safety Facility</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>Totals:</td>
<td>81</td>
<td>119</td>
</tr>
</tbody>
</table>
Figure 10: Existing & Proposed Public Charging Stations

- Existing
- 2017 Pending
- SCE Charge Ready
- Additional Off-Street
- Proposed Curbside
- Proposed Streetlight
EV Action Plan Recommendations

Santa Monica’s success at early adoption has catalyzed a demand for electric vehicles so much that it has become difficult to sustain without a structured program or policy in place.

Frequent requests are made for more public charging stations and existing stations are often full. Renters in multi-unit dwellings (MUDs), struggle to convince landlords to install charging stations and often lack off-street parking, limiting the ability of many to go electric.

Faced with a lack of infrastructure, people are choosing not to go electric. In order to support wide scale EV adoption, Santa Monica must address these barriers and provide resources to facilitate access to charging facilities.

This plan was developed with research, field data and expertise in the EV charging industry. It is aimed to provide specific actions that can be accomplished within a short amount of time and yield measurable results.

Demand for EV charging has surpassed the supply of charging stations and will continue to grow. Santa Monica’s current EV infrastructure lacks the capability to manage usage, promote turnover, track electricity consumption, monitor system performance, communicate with administrators and users, and sustain itself financially. This inhibits the City’s ability to adequately catalyze a large network of charging infrastructure.

This plan is organized into four priorities with recommended actions to overcome barriers to EV adoption:

Public Infrastructure: Modernize and expand public EV infrastructure to improve user experience and sustain operations.

Private Charging: Increase EV Charging for Multi-Unit Dwellings (MUDs) and workplaces.

Public Policy: Update parking policies and practices for efficient charging station use.

Community Outreach: Develop EV outreach programs and resources for residents and businesses.
Public Infrastructure: Expand and modernize public EV infrastructure to improve user experience and sustain operations

1. Add new smart chargers to the network; retrofit or replace legacy chargers with “smart” chargers.
2. Develop a fee structure that recovers operations and maintenance costs, encourages user turnover, and supports community EV programs.
3. Earn credit revenue by participating in the state Low Carbon Fuel Standard program.
4. Add charging stations for City fleet facilities.
5. Explore innovative EV charging technologies to integrate into Santa Monica’s EV charging network.
6. Explore DC fast charging options where appropriate and feasible.
7. Develop guidelines and standards to support charging for a range of e-mobility options.
a) Add new smart chargers to the network; retrofit or replace legacy chargers with “smart” chargers.

Expanding the charging network will include a multi-faceted approach and a range of site locations, including surface lots, parking structures, parks, libraries, and curbside charging. Cumulative EV sales are expected to surpass 3,000 by 2020. Expanding the network to 300 stations will provide much needed charging access to support growing demand. Reaching our goal of 15% EVs by 2025 will mean 10,000 EVs on the road. The long-term goal of 1,000 chargers by 2025 will help reach a ratio of approximately 1 public charger for every 10 EVs (compared to the existing ratio of 0.07 chargers per 10 EVs).

Plug In America projects that a 10% increase in EV sales results in 6% more public charging, creating a virtuous cycle of demand. A similar report found that installing infrastructure can be three times as cost effective as providing financial incentives for EV purchases (Plug In America, 2016).

Santa Monica has installed over 70 level 2 publicly available EV charging stations to date, with a total of 89 available port connections (some stations multiple charging ports). This early leadership has also brought growing pains. Over 10 years later, most of the existing public and fleet chargers are outdated and “dumb” – without any communications, monitoring, controls or cost recovery capabilities. Several chargers in the City’s portfolio are obsolete. There are various brands and models of chargers, offering no consistency for the user or maintenance staff.

This lack of consistency hampers the City’s ability to expand charging citywide. Upgrading the existing public charging network with smart stations would enable Santa Monica to address these issues and establish a uniform technology for managing the existing system and future growth.

Evolving charging technologies and services provide a new level of customer service and management capabilities for both operators and users. Tracking energy usage is necessary to analyze electricity usage and costs, observe charging behavior, and collect payment. Monitoring capabilities allow station managers to quickly identify operations and maintenance requirements, and monetize the emissions-reduction benefit through the State’s Low Carbon Fuel Standard program, which can reduce costs. Some smart charging technologies can determine when stations are not in use and divert the power to occupied stations, rather than blocking the amperage when not in use.

Table 7 shows the recommended project phases to add and upgrade EV chargers. Most new stations will be level 2 stations, which are the most common type of
stations. Level 2 chargers typically charge through 208-240 volt electrical service and require a dedicated circuit of 30-40 amps. Depending on the battery size, level 2 charging adds around 10-20 miles of range per hour of charging time. In addition, installing Level 1 110-volt outlets is a low-cost option to provide charging for electric bikes and neighborhood electric vehicles.

System Upgrade and Replacement Costs

The costs to replace the existing EVSE and add new stations are largely dependent on the extent of electrical services needed. Dual-port charging units are preferred to single-port units due to lower installation and maintenance costs and smaller space requirements. Dual-port EVSE smart charging units typically cost between $2,500-$4,500. Previous installation costs for existing public chargers in the City’s parking structures and surface lots ranged from $5,000-$15,000 per unit (Table 8). These costs vary widely depending on the distance to the electrical service panel and the difficulty of the electrical run. The installation costs to replace existing stations will be significantly lower than at new sites without the electrical wiring and conduit already in place.

Total costs and funding estimates to expand the EV charging network are outlined in the Implementation section. Upgrade options may also include equipment lease, alternative financing, and advertising/sponsorships to offset costs. Grant funds will be sought when available.

b) Develop a fee structure that recovers operations and maintenance costs, encourages user turnover, and supports community EV programs.

Free EV charging incentivized early EV adoption. As the State and City aim to

<table>
<thead>
<tr>
<th>Location Type</th>
<th>Price Range</th>
<th>Average Installation Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Lot</td>
<td>$5,000-$15,000</td>
<td>$10,492</td>
</tr>
<tr>
<td>Parking Structure</td>
<td>$10,000-$13,000</td>
<td>$11,693</td>
</tr>
<tr>
<td>Parks</td>
<td>$8,500-$15,000</td>
<td>$11,707</td>
</tr>
</tbody>
</table>
reach California’s 2025 goal for wide scale EV deployment, cost recovery (charging a fee) will be an essential tool to adequately maintain a limited resource for drivers as well as recoup operational costs. It is estimated that the City’s electricity costs for public charging are approximately $260 per charger per year, or $21,00 total for all 81 chargers currently available.

A time-of-use (TOU) fee per kWh is the recommended model for Santa Monica because it is the most equitable. TOU rates vary based on the time of day and season. Higher rates are charged during peak demand hours and lower rates during off-peak hours to incentivize use during periods of lower demand.

Within a given hour, vehicles can consume anywhere from 3 kW to 7 kW. This variation is due to different battery sizes, which can be most accurately reflected by a kWh fee. Fees can be set to vary by users, with different rates programmed into the smart charging stations (e.g. fleet vehicles, resident rates, etc.).

Cost recovery supports the expenses related to:
- Electricity consumption (kWh)
- Electricity demand (kW)
- Leasing or purchase of equipment
- Installation labor
- Maintenance & repair
- Networking & communication service
- Financial transactions
- Tracking & reporting data
- Expansion of infrastructure

Cost recovery also provides a means of ensuring turnover so that there can be adequate charging access for all drivers. Charging a nominal fee for electricity, time or some combination thereof, disincentivizes “accessory charging”, or charging vehicles simply because the service is available, rather than a necessity.

Pricing policies that implement fees for parking after 3-4 hours encourage higher utilization of publicly accessible stations. Users that are done charging are motivated to move their vehicle to allow for other vehicle drivers to charge at the charging spots. The City has separate Fee and Fine schedules/resolutions, which will need to be considered.

Managing the length of stay at charging stations can also be achieved through signage, parking enforcement, and/or an additional per-hour occupancy fee for vehicles connected beyond the allotted time. This will open up charging stations to drivers who have a greater need to charge and are willing to pay for the electricity.

Cost recovery models can be summarized in the following categories:

The **Prepaid Model** allows EV owners to prepay a fixed amount for unlimited access to EVSE within the network.

The **Cell Phone Model** offers EV drivers a combined home and public charging option. In this model, the site hosts’
infrastructure costs are substantially lower, but the vendor has exclusive access to the site for a specified length of time, limiting the options for the users.

The Gas Station Model allows EV owners who are not in a network to be charged a per session fee – e.g. $2 per hour or $0.25/kWh per session.

The Hybrid Model entails a partnership between network operators and site owners. Network operators lease parking spaces from the site owner and incur operating costs. The operator also retains the revenue collected (similar to a vending machine operator).

Of these various methods, staff has identified the Gas Station Model as the most appropriate and convenient option for use in Santa Monica. There is no network membership required. Several methods of payment should be available to EVSE users. Available methods of payment may include RFID card, smartphone and app authentication, pass code or credentials, or credit card (on the station or by telephone).

Pricing Structure
The next component of cost recovery is the pricing structure. Pricing structure options applicable to the Gas Station Model include:
- flat fee per hour
- fee per kWh
- differential fee per hour
- fee per session

The flat fee per hour and the fee per kWh are the most common pricing structures for EV charging. A flat fee per hour most common among private charging stations and municipalities because it is simple, provides stronger incentives against overstaying, and is more profitable. The following data provide an overview of statewide and regional EV charging rates at public facilities:
- Almost 70% of all California public agencies that provide EV charging charge a fee.
- Out of the 142 CA public entities that charge a fee, almost 40% charge by electricity consumption (kWh).
- Out of the 27 public agencies in the LA region that charge a fee, the majority charge either an hourly rate between $1-$2 (30%) or a per kWh rate of $0.20-$0.40/kWh (22%) or $0.59/kWh (19%). (See Table 10)

Time-of-Use Rates
SCE has dedicated time-of-use (TOU) EV charging rate schedules for residential and non-residential properties. Time-of-use rates incentivize charging during off-peak hours to help manage demand on the electric grid.

SCE has proposed three new, optional commercial EV rates that apply to different EV customer types, including: EV fleets, workplaces, DC fast charging stations, common area parking lots at multi-unit dwellings, and city or private parking lots. The new rates eliminate
demand charges for a five-year introductory period.

Designing fees for public charging that reflect peak and demand charges can incentivize drivers to do most of their non-essential charging at home.

Fee Collection
Fees collected by an EV service provider can be remitted to the City on a monthly basis. Various fee schedules can be developed for regular users such as residents and City fleet vehicles. Variable pricing can also be developed to account for demand charges and length of stay. The fee structure will need to be approved by City Council.

Establishing a fee schedule will be a strategic and continuous process. Once new stations are installed, charging should remain free while staff analyze station usage and behavior. Staff will return to Council with a recommended initial fee after 25 public smart charging stations have been installed and operating for 90 days.

Penalty fees for overstaying in EV charging spaces should be implemented immediately to enforce turnover. Staff will prepare annual reports to review station usage, operating costs and revenues and make recommendations as needed to adjust fees.

c) Earn credit revenue by participating in the California Low Carbon Fuel Standard program.

The Low Carbon Fuel Standard (LCFS) is a regulation designed by the California Air...
Table 9: Analysis of Publicly Available EV Charging Rates

<table>
<thead>
<tr>
<th>Public Agencies</th>
<th>California</th>
<th>Los Angeles region (LA & Ventura County)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providing EV charging</td>
<td>210</td>
<td>42</td>
</tr>
<tr>
<td>Percentage that charge a fee</td>
<td>69%</td>
<td>64%</td>
</tr>
<tr>
<td>Most common fee breakdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per hour</td>
<td>$1-2</td>
<td>24.6%</td>
</tr>
<tr>
<td></td>
<td>$1-2</td>
<td>29.6%</td>
</tr>
<tr>
<td>Per kWh</td>
<td>$0.20-0.30</td>
<td>10.6%</td>
</tr>
<tr>
<td></td>
<td>$0.20-0.30</td>
<td>22.2%</td>
</tr>
<tr>
<td></td>
<td>$0.32-0.49</td>
<td>8.5%</td>
</tr>
<tr>
<td></td>
<td>$0.32-0.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0.59</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>$0.59</td>
<td>18.5%</td>
</tr>
<tr>
<td>Total captured*</td>
<td>64.1%</td>
<td>70.4%</td>
</tr>
</tbody>
</table>

*Fees not captured were higher or lower than what is shown, but were less common
Source: Alternative Fuel Data Center, Department of Energy

Table 10: Examples of Public EV Charging Rates in Los Angeles County and Ventura County

<table>
<thead>
<tr>
<th>Flat Fee per Hour or Session</th>
<th>Fee</th>
<th>Fee per kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City of Manhattan Beach</td>
<td>$0.75/hr</td>
<td>$0.22/kWh</td>
</tr>
<tr>
<td>City of West Hollywood</td>
<td>$1.50/hr</td>
<td>$0.25/kWh</td>
</tr>
<tr>
<td>City of Hermosa Beach</td>
<td>$2/hr</td>
<td>$0.25/kWh</td>
</tr>
<tr>
<td>City Culver City</td>
<td>$2/hr</td>
<td>$0.59/kWh</td>
</tr>
<tr>
<td>Playa Vista Community Center</td>
<td>$2/hr</td>
<td>$0.59/kWh</td>
</tr>
<tr>
<td>City of Los Angeles</td>
<td>$2/hr</td>
<td></td>
</tr>
<tr>
<td>City of Ventura</td>
<td>$1/session</td>
<td></td>
</tr>
</tbody>
</table>

*Note: Municipal charging fees may vary by facility
Source: Alternative Fuel Data Center, Department of Energy
Resources Board (CARB) to reduce greenhouse gas emissions from transportation fuels used in California. By 2020, the LCFS will be responsible for achieving a 10% decrease in carbon intensity of vehicle fuels (CARB, 2016).

The LCFS provides a credit trading system similar to cap-and-trade for vehicle fuels. Low carbon fuels like hydrogen, renewable diesel or natural gas and electricity generate a monetary value for the fuel provider or station host. Station hosts offering electricity for EV charging are eligible to receive credits by opting into the LCFS program. The credits may be sold to fuel producers who must offset an exceedance of the LCFS standards. Santa Monica can receive LCFS revenue by tracking electricity consumption for EV charging.

Projected revenues are dependent on the fluctuating credit price and the rate of station use; a modest estimate is $0.08/kWh. Considering current usage trends (Table 11) the City can generate approximately $35,000 in annual revenue once at least 200 smart charging stations are installed. The existing non-networked (“dumb”) charging stations cannot earn LCFS revenue because they cannot track energy usage to send to CARB.

The City could use this revenue to help subsidize user costs, build or maintain additional stations, or to help fund outreach and education efforts.

d) Add charging stations for City fleet facilities.

The City aims to have a comprehensive integration of EVs across departments. In 2016, 119 out of the City’s 580 fleet vehicles, or roughly 20%, were electric. This number will increase as Fleet Management continues to pursue a goal of 80% alternatively fueled fleet vehicles by 2020.

Currently, most City fleet vehicles share public charging infrastructure, with the highest demand located at the Civic Center Parking Lot and Structure. The Civic Parking Structure has 17...
connections (16 level 2 and one DC fast charging station) available on the first floor.

These stations were previously utilized primarily by city fleet vehicles, but as of May 2017, the city designated seven Level 1 connections on the second floor for City Fleet only in order to make the first floor level 2 connections more available to the public. An additional 31 fleet-only charging stations will be installed on the roof of the Civic Center Parking Structure through the Charge Ready program. The Civic Solar Port has twelve Level 2 connections that are shared by City fleet and the public.

Future electrification of larger vehicles such as the Big Blue Buses and Waste Management trucks would require high-capacity charging and load management, in addition to strategic site planning.

e) Explore new and emerging EV charging and storage technologies.

Advancements in EV charging technologies, energy storage, and charger-sharing applications are offering more efficient and reliable ways for EV drivers to charge their vehicles.

Web/Smartphone Applications
Many web-based applications are available to help EV drivers locate nearby charging stations on the go. In addition to apps created by EVSE service providers such as ChargePoint and EVgo, other apps have evolved to facilitate charging in the shared economy.

PlugShare shows both public and private charging stations, fees, and service providers. Contact information is provided by some private property owners willing to share their charging stations.

EV Match focuses exclusively on pairing private residential EVSE owners with EV drivers looking for a place to charge. This allows EVSE owners to recoup some of their costs while offering a solution to drivers in need of a nearby charging station.

Pavemint is an app that allows individuals to rent out their private parking spaces, with the potential to rent spaces with charging station access as well.

These services should be reviewed further as there may be zoning code implications to consider. The growth of the sharing economy may help supplement public stations in residential neighborhoods.

Solar & Energy Storage
The advent of battery energy storage has created a new opportunity for EV charging. While EV charging may increase a building’s electricity demand, battery energy storage can help mitigate the high costs associated with peak hours, avoiding the need for expensive, inefficient fossil-fuel plants to meet high electricity demands. Integrating solar PV with energy storage is one of the cleanest ways to provide backup electricity for
charging.

Large parking structures are the best locations to pilot integrated storage due to the large building loads. UCLA Smart Grid Energy Research Center (SMERC) has installed several proprietary EVSmartPlugs and one DC-fast charger within the Civic Center Parking Structure in order to demonstrate the benefits of smart charging and batteries. The plug-in devices collect energy consumption data and perform remote monitoring and control of EV charging.

SCE can be an engaged partner and potential funding source regarding new and emerging EV charging and storage technologies.

Load Management/Demand Response
Charging EVs increases electrical demand, which places a strain on the electrical grid and increases costs for the site host. When the utility grid experiences peak demand, utilities turn to fossil fueled power plants to provide additional power, which causes more greenhouse gas emissions.

Smart chargers can alleviate this by reducing or limiting their rate of charge. This function provides a benefit to the utility, which can incentivize the site host to provide this service through time-of-use rates.

Installing EV charging stations can be cost-prohibitive and unfeasible if the existing electrical infrastructure cannot support the electrical load. Load sharing technology offered by several EV service providers can help to avoid expensive electrical upgrades by enabling more vehicles to charge on the same 30-40 amp circuit.

Charging rates decrease when multiple vehicles are plugged in at the same time, however smart systems can detect when a battery is fully charged and will begin delivering full power to another vehicle. Station owners can monitor the building’s electrical capacity and efficiently manage the power across several charging stations so as not to exceed the total electrical capacity.

Mobile Charging
Solar carports, which offer an alternative to the standard grid-connected EVSE, do not require expensive trenching and wiring, and can be relocated if necessary. These units, though typically more expensive than traditional chargers, can provide an array of services, like cell-phone charging, emergency power and field-surveys for charging demand.

The City installed one dual-port solar carport called the EVARC at the Santa Monica Airport in October 2017. The station is produced by Envision Solar and utilizes a solar tracking system to maximize solar production. The City of San Francisco is receiving three EV ARCs through grant funding. San Francisco plans to track usage patterns and move the stations every few months to assess usage.
Wireless Charging

Wireless charging is another option that offers aesthetic and convenience benefits, but is not yet commercially available. Charging equipment is either surface-mounted or embedded in the ground and connects to grid-supplied power through a wireless receiver. A mobile app provides communication between the hardware, serving as the sole interface with the driver.

Wireless charging stations are estimated to be 12% less efficient than corded Level two 30amp 240-volt charging systems and 7% less efficient than corded Level 1 charging systems. One of the key restraints for the wireless car charging industry is the lack of a unified standard of products from the manufacturers.

f) Explore DC fast charging options where appropriate and feasible.

DC fast chargers (DCFCs) offer a convenient option by providing a full charge in less than 30 minutes, compared to four to six hours for level 2 chargers.

The City currently has one public DC fast Charger (480 volt) available in the Civic Center Parking Structure. The budget proposal for the EVAP (Table 12) includes a recommendation to add 10 public DCFCs. These stations can serve 2-3 times as many vehicles per day compared to level 2 charging stations; however, there are challenges to installing and operating them.
Barriers to adopting fast charging stations include expensive equipment and installation costs, large space requirements and high electrical demand. In addition, charging exclusively through fast charging can lead to imbalanced battery cells, which may reduce vehicle range by about 10-15%.

Installation costs for DCFCs can range from $4,000 to up to $51,000 per unit (New West Technologies LLC, 2015), largely due to complicated electrical upgrades for the higher voltage requirements. Fast charging options will be explored throughout the city through public private partnerships.

Southern California Edison is proposing a one-year pilot program to deploy DCFCs in clusters. If approved by the California Public Utilities Commission, this could be a potential funding source (see Appendix VI) and opportunity to pilot the clustered charging station model (multiple stations in one location).

Cities such as Vancouver and Sacramento have made investments in fast charging as a way to compensate for a lack of access to home and workplace charging.

g) Develop guidelines and standards to support charging for a range of e-mobility options.

The City has seen an uptick in the use of e-mobility options, including neighborhood electric vehicles (NEV), electric bicycles, and electric scooters. These modes provide additional options for low-carbon local trips. Over 50% of vehicle trips in Santa Monica are less than 3 miles, and one in 10 trips are to the Downtown area.

The Santa Monica Free Ride currently offers free rides within Downtown Santa Monica and connecting to Venice, offering a critical first-last mile service and

NRG EVgo Fast Charging Station

Source: Mark Kane, InsideEVs.com
enabling greater mobility without a car.

E-mobility modes support the City’s goals to increase cleaner, greener transportation. They are relatively easy to charge because they almost exclusively use the common 110AC outlet. As more e-mobility options become prevalent, more public charging will need to be offered for these types of modes.

The existing municipal Bicycle Parking code 9.28.140 requires at least one electric outlet in each long-term bicycle parking area (at least four hours), however it does not address short-term e-bike parking.

Developing strategies and guidelines for charging e-bikes and other e-mobility options at parking structures, lots, and other designated locations will support the growing number of users throughout the city.

Adding 110 AC outlets is less intensive than providing Level 2 or DC fast charging. Where appropriate, this ‘slow charging’ option could be made easily available. More research and outreach will need to be conducted in order to determine the best locations for this kind of charging.

The Free Ride provides free service over short distances in Santa Monica and Venice.

Source: The Free Ride
Case Studies: Municipal Progress in DC
Fast Charging

Vancouver
The City of Vancouver has allocated around $2M to deploy hubs of public fast charging stations (known as “Ehubs”) into community development options and the redevelopment of existing parking facilities. Strong community interest in fast charging helped spur this investment: “Approximately 70% of [survey respondents said that having access to a fast charging station at a favorite amenity such as a coffee shop or grocery store within a 10-minute drive of their home would make them very or somewhat likely to consider an EV” (City of Vancouver Administrative Report, October 19, 2016).

Sacramento
The City of Sacramento partnered with EVgo in 2017 to install six curbside fast charging primarily to serve MUD residents without garages. An initial three chargers and four EV-only parking spaces are expected to be in place by mid-2018. Rates will by 20 cents per minute plus a flat fee of $4.95 per session or $19.95 per month (Knowles, 2017).

Portland
As part of the Portland Electric Vehicle Strategy, the City aims to increase access to EV charging infrastructure by doubling the number of both level 2 and DC fast chargers available to the public (Portland Electric Vehicle Strategy, 2017).

Seattle
Seattle’s EV carshare program, ReachNow, will be adding 20 fast charging stations across the city ($1.2M). Each station will be able to accommodate about five EVs, supporting up to 100 total once complete.
Private Charging: Increase EV Charging for Multi-Unit Dwellings (MUDs) and Workplaces

a. Develop a pilot rebate program for MUD residents and workplaces; include additional funding for low-income residents.

b. Identify qualified vendors to handle MUD and workplace charging in Santa Monica.

c. Streamline the permitting process and allow online permits for small-scale installations.

d. Designate off-street and on-street locations for public charging infrastructure.

e. Implement a pilot program to provide EV charging through streetlights.

f. Partner with priority destination sites and leverage public-private-partnerships to install EV charging.
Financial and logistical barriers coupled with a lack of awareness and incentives inhibit access to onsite charging for MUD tenants and workplaces. Addressing barriers to EV charging in MUDs and workplaces is imperative to making EV ownership a truly viable option for the majority of Santa Monica residents. An early Los Angeles pre-survey estimated that increasing access to charging in MUDs to 50% could increase EV adoption 10% (Plug in America, 2016).

Santa Monica has approximately 36,000 MUDs, which make up 71% of the total housing stock. Most MUD residents lack access to home charging stations, and the process to install them can be overwhelming and expensive.

Constraints to charging in MUDs include:
- Limited supply of on-site private parking
- Insufficient electrical service access and/or electrical loads
- Locational constraints between the electrical service and desired charging location

Figure 13: Top MUDs with Residents Likely to Purchase EVs

Source: UCLA Luskin Center, 2017
- High installation costs
- Legal barriers to cost recovery
- HOA/landlord opposition
- Lack of education and understanding of technology and options

Most small commercial and residential property owners are not familiar with the type of infrastructure that is required to install EV charging stations on their properties. More than half of the property managers surveyed by Westside Council of Governments have been approached by tenants requesting an EV charging station on their property and felt unprepared to respond. The primary barriers to installation were high cost and space constraints.

A study by the UCLA Luskin Center (Figure 12) identifies MUD households with the highest latent demand for PEVs. The score accounts for the historical adoption rate of PEVs in each census tract, as well as the PEV adoption rate of individuals living in households of a certain value. Figure 13 shows a breakdown of costs related to EVSE installation based on estimates from 15 MUD site visits.

Numerous reports and resources have been developed to help address these barriers, including the Governor’s Office of Planning and Research’s Zero-Emission Vehicles in California Community Readiness Guidebook, the California PEV Collaborative Plug-in Electric Vehicle Charging Infrastructure Guidelines for Multi-unit Dwellings, and the UCLA Luskin Center’s Southern California Plug-in Electric Vehicle Readiness Plan.

Figure 14: Breakdown of Installation Costs for Level 2 EVSE Units

Source: UCLA Luskin Center for Innovation, 2016: Overcoming Barriers to Electric Vehicle Charging in Multi-Unit Dwellings: A South Bay Case Study
The Luskin Center is a research center that has conducted extensive research related to electric vehicle market growth and demand for charging infrastructure. It has produced several additional publications to help guide EV programs and policies in California, including, *Overcoming Barriers to Electric Vehicle Charging in Multi-unit Dwellings: A South Bay Case Study*, *Factors Affecting Plug-in Electric Vehicle Sales in California*, and *Designing Policy Incentives for Cleaner Technologies: Lessons from California’s Plug-in Electric Vehicle Rebate Program*.

The solution for charging in MUDs will vary on a case-by-case basis – largely dependent on demand and existing conditions. See Appendix III: MUD Case Studies and Best Practices for a detailed overview of MUD installations with varying parking and cost recovery systems. The following recommendations will help address the identified barriers.

- **a) Develop a pilot rebate program for multifamily charging to help property owners and residents install charging stations; include additional funding for low-income residents.**

 A multi-state survey found that 22% of EV owners would not have purchased their vehicle without a home EVSE subsidy; another 39% said it was a very important part of the decision (Plug In America, 2016, p. 18).

 A municipal rebate program can provide much-needed financial assistance for MUD property owners and residents who are ineligible for existing funding programs. A portion of funding for this pilot program should be dedicated to low-income residents as this is crucial to providing clean air and cost-savings benefits and ensuring mass adoption.

 San Diego Gas & Electric plans to install 350 EV charging stations in low-income areas within their service territory through their Power Your Drive Program. Targeting areas with affordable housing units and higher concentrations of low-income residents can improve EV charging accessibility.

 The Luskin Center developed rebate specifications for an EVSE pilot program as part of their comprehensive analysis to support EV adoption in Santa Monica. In order to create an effective, equitable, and robust EVSE rebate program, the Luskin Center recommends the following rebate specifications:

 - Rebates should cover 100% of EVSE equipment costs (up to $750 in
Rebates for purchase and installation costs should be awarded separately to help control for the cost of the program. Setting maximum incentive amounts for EVSE and installation activities also encourages retailers and contractors to keep their prices low, since property owners can’t combine incentive amounts for any single expense.

Since EVSE installations become more cost-effective as the number of chargers increase, financial incentives should increase for property owners who install more than one EVSE unit.

Review the program after one year to evaluate whether the program is inducing demand, whether the incentive amounts accurately reflect the cost of EVSE installation for buildings in Santa Monica, and whether property owners are realizing private benefits from EVSE installation (e.g., an increase in property value).

In addition to these recommendations from the Luskin Center, City staff recommends the following specifications:

- No one site should receive more than 10% of the funding.
- No single recipient should receive more than 12.5% of the funding for its combined sites.
- Rebates may be used in conjunction with other local or Federal incentive programs.
- Once the application is approved and funding reserved, the applicant has six months to complete the installation.

b) Identify qualified vendors to handle MUD and workplace charging in Santa Monica.

EVs are still relatively novel for many people and the intricacies of charging can be confusing. Everyday, there are
Case Studies: Incentive Programs

Los Angeles Department of Water and Power (LADWP)
LADWP is offering $21.5M in rebate funding through the Charge Up LA! pilot program, which runs until June 2018, or until funds are exhausted. The program encourages EV charging station installations in workplaces and multi-family buildings. LADWP provides a rebate of up to $500 per wall-mounted charger for residential customers (hardware only). Commercial and multi-family residential customers receive up to $4,000 per hardwired Level 2 charger. LADWP has an EV Program Customer Service Representatives to assist with charger installations and service.

Bay Area Air Quality Management District
The Air District committed $12.5M for EV-related projects, with $5M reserved for EV charging infrastructure as part of a regional EV readiness commitment. Unlike most rebate projects, participants must be eligible for at least $10,000 in funding, with a cap of $500,000 per year per facility. Eligible facilities include MUDs, workplaces, transit parking, and destination facilities. Stations must operate for at least three years and achieve minimum usage requirements. Rebates cover up to 75% of the cost of purchase installation, and operation of the equipment.

Austin Energy
Austin Energy facilitates EV charging in MUDs by offering EVSE rebates and a range of benefits to MUD property owners and EV drivers. Rebates are available for up to $4,000 or 50% of the cost to install Level 2 charging stations, which must be compatible with software to enable usage data collection.

Residents are charged a flat fee of $25 every six months on their electric bill for unlimited electricity. Station hosts are reimbursed for electricity used at the station. Property owners have access to operational support, may be eligible for a green building innovation point, and receive EV charging decals to promote the amenity at their building. Austin Energy provides property owners with a list of approved vendors to help with the selection process.

Austin Energy is in the process of conducting a new pilot program with an increased rebate to 80% of the installation cost at 20 properties.

Southern California Edison
Southern California Edison currently does not offer a rebate program for EV infrastructure, however SCE’s 2017 Transportation Electrification proposal includes a customer rebate for residential charging installation. This rebate would apply to single-family residences and smaller MUDs that were not covered under the previous Charge Ready program.

See Appendix V for Additional Rebate Programs and Appendix VI for SCE’s $570M Transportation Electrification proposal.
more providers offering different technologies and solutions. For property owners, it can be confusing to navigate options and keep costs low. According to a recent survey of MUD property owners in the Westside, over 50% of respondents were unfamiliar with EV charging technology.

With a majority of Californians and potential EV drivers living in MUDs, a growing number of service providers are providing lower-cost solutions by taking advantage of new technologies and financing models. Identifying local vendors who specialize in MUD charging and workplace charging through an open vetting process will save property managers time and money searching for their own vendors. It will also provide a frame of reference for residents and managers interested in bringing EV stations to their properties in Santa Monica.

c) Streamline the permitting process and allow online permits for small-scale installations.

Under Assembly Bill 1236, cities are required to provide a streamlined and expedited permitting process for EV charging stations by September 30, 2017. A first reading of the new ordinance took place at a City Council meeting on September 12, 2017. The submittal requirements for expedited permitting is available on the Planning Departments Applications and Forms webpage as of November, 2017.

More than 85% of EV charging takes place at home, which is why a streamlined permitting and installation helps facilitate EV adoption. Plug In America advocates: “[Do] what you can to make home EVSE installation a quick, high-value, one-stop shopping trip.

The following re required to obtain a building permit to install a charging station:

a) Completed EVSE application
b) Property owner verification or letter of authorization
c) Completed Eligibility Checklist
d) Project plans site plan and floor plan showing precise location of proposed EVSE

Permit applications may be submitted, reviewed, and approved at Permit Services in City Hall or submitted electronically. Once EVSE permit is issued and system has been installed, an inspection is required prior to receiving final approval for the charging station.

Consistent with the City of Santa Monica’s approach to renewable energy and sustainable systems, the City encourages the use and installation of EVSE systems and therefore does not charge permit and plan check fees for EV chargers.

d) Designate off-street and on-street locations for public charging infrastructure.

Increasing public charging in high-density multi-family residential neighborhoods
will offer an option for MUD residents who lack off-street (private) charging. Stand-alone parking lots offer the most convenience in terms of EVSE installation and monitoring, however, these are not conveniently located for residential charging.

In addition to off-street parking, on-street locations have been identified for charging opportunities. Providing charging at these locations, however, can be challenging due to lack of available electrical infrastructure, undetermined rules and regulations concerning use, and due to right-of-way conflicts with other users. The high demand for all on-street parking in multi-family districts and commercial areas must be considered when creating dedicated EV charging spaces.

Head-in parking spaces, diagonal or perpendicular, are ideal for curbside charging as they take up less curb space and can utilize stations that feature two charging ports. These types of spaces, however, are much less prevalent than parallel curbside spaces and create less safe conditions for cyclists than head-out spaces. Efforts should be made to coordinate competing uses in the right-of-way. When siting EV charging locations, areas identified for future bike, pedestrian, or transit facilities should be avoided.

Appendix I shows an overview of proposed public stations, including curbside locations. These sites were identified given the following factors: the availability of head-in parking spaces; underutilized parking meters; a lack of nearby charging infrastructure; high-density neighborhood location; and/or close proximity to streetlights.

Figure 15 shows areas with high curbside charging potential based on proximity to commercial destinations and mid-day trips.
Figure 15: Curbside Charging Siting Potential

Source: UCLA Luskin Center, 2017
e) Implement a pilot program to provide EV charging through streetlights.
Streetlight EV charging is an innovative option to provide public curbside charging; the charging infrastructure is affixed to the existing streetlight. As streetlights are converted to efficient LED lighting, electrical power demand becomes available for additional uses like EV charging. Cities like Los Angeles, Munich, and Oxford have piloted this new technology to provide a new source of EV charging.

In early 2017, over 1,270 Santa Monica streetlights were upgraded to LEDs. When converted to LED, streetlight circuits have excess capacity that could potentially be utilized for EV charging.

This technology should be piloted in areas where the existing infrastructure can accommodate the added load (e.g. large raceways and ample distribution infrastructure), or in areas where a minimum of new infrastructure is required (e.g. final drop line, new meter pedestal).

For sites where there is not enough electrical capacity to install a 240V Level 2 charger, 120V outlets could be installed to supply power for e-bikes and EVs parked overnight.

Future streetlight conversion projects should take a proactive approach and build in the ability to add circuits (i.e. empty conduit) so that the infrastructure can accommodate EV charging.

City staff will need to assess the following areas with SCE prior to implementation: availability of City-owned streetlights with ample electrical capacity; requirements for separate meters and breakers; increased costs due to new rate categories; conduit and trenching requirements; and engineering and design fees.

Curbside and streetlight charging stations should be metered on time-of-use rates to account for the additional load and encourage charging outside of the peak period.
Case Studies: Streetlight Charging/Innovative Technologies

City of Los Angeles
The City of Los Angeles replaced its energy-intensive sodium-vapor streetlights with LEDs reducing energy use by 80%. The City utilized the excess electrical capacity in the street lighting circuit to charge electric vehicles. Thirty-two Level 2 streetlight charging stations were installed and are operated by ChargePoint. Usage data for 22 of the stations show more than 3,500 sessions during 2016.

Fees to park and charge at the stations are $1-$2/hour depending on infrastructure requirements and whether or not the City had to forgo revenue from a pre-existing parking meter.

Initially, higher-revenue metered spaces were avoided, but due to high usage rates, the City has been able to earn enough revenue to pay for the electricity. All stations have credit card readers with RFIDs. Installations take about two to three hours to attach the unit to the streetlight and cost around $9,000 per unit.

A rebate from LADWP covered about 40% of the cost and charging revenue helps make up the difference. Street striping around the stations indicates EV-charging only.

City of Lancaster
Munich-based startup eluminocity and the BMW Group announced their “Light and Charge” pilot project in January 2016. The project is a system of “smart” streetlights that double as charging stations for EVs and are being tested in Munich, Oxford, Los Angeles, Seattle, and now Lancaster.

The City of Lancaster launched a demonstration project in 2017 that will integrate chargers into five streetlights in the downtown area. A grant from the Antelope Valley Air Quality Management District will cover 80% of project costs, including installation, maintenance, and data collection. The remaining 20% will be covered by project partners, including EasyCharge and eluminocity. Drivers connect a standard charging cable to the streetlight, and use a control panel on the light to swipe their charge card to register use.

Lotus
The Lotus technology is a solar-powered EV charger that doubles as an LED streetlight and a sheltered bench. The Lotus was designed by Luminexence for both parking areas and parks. It has a 2.8 kW photovoltaic surface, built-in LED lights, and a waterproof Scame electrical outlet to charge EVs. It currently only fits European plug outlets and is produced in Bergamo, Italy. The grid independence makes it a resilient option in the case of power outages. If a similar technology becomes available in the U.S. and is financially feasible, it may be worth pursuing.
f) Partner with priority destination sites and large employers to install EV charging.

Priority destination sites may include movie theatres, schools, churches, retail centers, and other entities that serve multiple uses with relatively long dwell times (at least one hour). The City will solicit interest from key sites and reach out to property owners to address concerns and facilitate EV charging in strategic locations. Public-private partnerships could provide additional charging opportunities throughout the City.

What is a Priority Destination Site?
Characteristics include:
• Long dwell times
• Open to the public
• Located next to residential neighborhoods
• Serves multiple commercial uses
• Private host

Source: Inhabitat, 2011
Public Policy: Update parking policies and practices for efficient charging access and station use

a. Modify City Ordinance to allow on-street EV charging.
b. Update zoning ordinance requirements to increase the parking spaces available for EV charging.
c. Review and update parking policies and signage for public EV charging locations.
d. Explore a program to adjust nighttime parking rates or provide resident charging permits for overnight charging at public facilities.
e. Expand use of EVs in carshare and rideshare services.
f. Expand the fleet-sharing system for all city departments and divisions located at the Civic Center.
A variety of regulations and practices can be enhanced to optimize EV charging. The City’s existing parking requirements do not adequately incentivize or require property owners or developers to designate additional EV charging spaces and install EV infrastructure.

Other issues that could be addressed through policy updates include on-street parking designation, EV parking signage, unutilized public charging facilities at night, and charging access for EV car sharing services.

a) **Modify City Ordinance to allow on-street EV charging.**

Under the existing ordinance 3.12.835, the Director of Planning and Community Development (PCD) can designate parking spaces in City-owned off-street parking facilities for the exclusive purpose of charging electric vehicles. Modifying this ordinance to include on-street parking would enable the PCD Director to enforce time limits on public chargers to ensure user turnover.

Despite the resources that are currently available for multifamily unit dwellings, limited access to off-street EV parking and charging remain an issue for MUD residents who wish to drive EVs. Street parking is an available asset that can be leveraged to provide additional public charging, with an emphasis in the multifamily neighborhoods.

The majority of Santa Monica neighborhoods have dedicated preferential parking. Approximately 50,000 preferential parking and visitor permits are issued per year. By 2025, California will aim for 15% of all new vehicles sold to be emissions-free. If Santa Monica meets this goal, the proportionate number of EVs that will need to park and charge in residential neighborhoods will increase substantially over the next 10 years.

Due to limited curbside parking in many dense neighborhoods, dedicating public curb space to EV charging may be controversial; however, there is a high demand for EV charging in these areas due to limited garage space and/or access to electricity to plug in. A balanced approach will be necessary to ensure that both charging and parking can be adequately and equitably provided for all.
Case Studies: Curbside Charging Programs

City of Vancouver
The City of Vancouver created a Curbside Electric Vehicle Charging Pilot Program as part of their broader EV Ecosystem Strategy adopted by Council in October 2016. The Pilot Program serves both non-residential and residential users, with a maximum of five installation for non-residential and a maximum of fifteen residential installations. Applications for the program are be open through June 2019, with each installation permitted under a licensing agreement for a five-year term. All applicants are responsible for the cost to buy, install, maintain and remove the EV charger.

City of Berkeley
The City of Berkeley implemented a 3-year Residential Curbside EV Charging Pilot in 2014 to allow Berkeley residents without off-street parking the opportunity to charge at home. Though this Pilot, accepted applicants can either create a new space to charge on their property or install a station at the curb adjacent to their home. Grant funding is available to reduce permit fees; however, the purchase, installation, and electric costs are the responsibility of the resident installing the station.

As of September 2017, only five out of the 29 approved curbside projects had been installed. This is largely due to high installation costs (ranging from $5,000-$20,000) and the inability to guarantee access to the charging station.

City of Walla Walla
The City of Walla Walla, Washington allows EV charging in the public right of way as long as they meet certain size, location, design and signage standards. The city engineer approves the location of charging facilities following review and recommendation from the site plan review committee. The location and design criteria require proper signage, maintenance, accessibility, lighting, and equipment protection. Location preference for EV charging stations is at the beginning or end stall on a block face.

City of Burbank
The City of Burbank conducted the first curbside EV charging pilot in the country in summer 2015, known as the EV Charge N’ Go Curbside Project. Eight dual-port level 2 chargers were installed curbside in the public ROW near retail, park, and library facilities. The total project cost of $230,000 (about $30,000 per site) was funded in part by a grant from the California Energy Commission. Usage tripled over the first six months, with peak charging times at 12pm and 7pm.

City of Seattle
The City of Seattle developing a residential EV charging pilot program. The program will support the installation of level 2 chargers in the residential sector by providing on-bill repayment and a time-of-day pricing model for EV charging.

In July 2017, Seattle launched a year-long pilot program that permits public and private EV charging in the public right of way near urban centers and commercial streets throughout the city.
b) Update zoning ordinance requirements to increase the parking spaces available for EV charging.

Per the 2015 Zoning Ordinance Update, all new development in Santa Monica, including remodels or expansions, must have one charging station for facilities with 25-49 parking spaces and two charging stations for 50-99 parking spaces. One additional charger is required for each additional 50 spaces.

As of January 1, 2017, all new EVSE installations must comply with the State Architect’s ADA Accessibility Building Standards. A minimum of one van-accessible space must comply with ADA Section 11B-812 for every 1-4 charging stations at a facility.

Per section 8.106.100 of the Santa Monica Green Building Standards Code, development projects must adhere to requirements to install electrical service panels in MUDs. Parking facilities must include a load of ten kilowatts per 5% of the parking spaces provided. These minimum requirements should be increased to accommodate for current and future demand for EV charging.

This plan recommends amending the Zoning Ordinance to require one EV-ready space per residential unit when parking is provided. This will ensure greater access to EV charging compared to a minimum percentage requirement. Parking spaces must be served by a 208/240 volt, 40 amp, grounded AC outlet, or there must be electric panel capacity and conduit to support future 208/240 volt, 40 amp outlets at each subject parking space.

The City should increase requirements for EV-ready spaces in new commercial buildings from 5% to 20%. On a case-by-case basis, where the Planning Director has determined EV charging and infrastructure are not feasible due to unreasonable hardship, the Director may consider an appeal from the project sponsor to reduce the number of EV spaces required.

The additional costs to add charge-ready spaces during the initial construction process are minimal compared to the cost of upgrading service panels and installing stations after the development process has been completed.
Case Studies: Building Codes Supporting EV Readiness

City of San Francisco
In February 2017, the City of San Francisco introduced new legislation requiring all new buildings to provide electrical capacity and infrastructure capable of supporting EV charging in 100% of parking spaces. The ordinance requires all new residential and commercial buildings to configure 10% of parking spaces to be “turnkey ready” for EV charger installation, and an additional 10% to be “EV flexible” for potential charging and upgrades. The remaining 80% of parking spaces must be “EV capable” by ensuring conduit is run in difficult to reach areas of a parking garage to avoid future cost barriers.

City of Fremont
EV Ready parking spaces equipped with the electrical raceway, wiring, and electrical circuit must be included in all residential and non-residential new construction projects and in additions where new parking spaces are provided. For single-family residential, the City of Fremont requires one EV ready parking space per each new dwelling unit. For multifamily projects of three or more units and for non-residential projects, 8% of the total number of new parking spaces must be EV ready.

City of Vancouver
In 2013, the City of Vancouver adopted new minimum requirements for parking stalls in both residential and commercial buildings. Twenty percent of parking stalls in new MUDs (with three or more units) must have Level 2 EV charging capacity; MUDs constructed since 2011 must support at least Level 1 EV charging. By 2023, 10% of all new commercial buildings must be equipped with Level 2 charging circuits.
c) Review and update parking policies and signage.

Public charging is available in off-street lots, parking structures, and on-street parking facilities. Regardless of the location, restrictions on time and length of use must be implemented to ensure turnover, prevent abuse of the system and enforce facility operating hours. Signage, communications, cost, and enforcement are tools that can help ensure efficient use of public chargers.

Replacing existing signs with standardized signage at all EV charging and parking stations in Santa Monica would enhance clarity for users. The two basic types of signs found at charging stations are general service signs, which identify and direct drivers to charging stations, and regulatory signs, which convey time- and permit-related restrictions.

In August 2017, the City approved the following EV parking signage standards:

There are currently seven EV charging locations in Santa Monica that do not meet these signage standards: Santa Monica Airport, Civic Solar Port, Montana & 11th St (curbside), Parking Structure 7, Santa Monica Pier, and Virginia Avenue Park.
For private installations of EV charging infrastructure, installers should follow the existing layout pattern at parking locations. This practice is necessary to prevent the re-striping of parking lots or drive aisles within a parking structure.

Though the City wishes to explore all avenues to increase public charging infrastructure, stations that offer broadly applicable connector types will be prioritized.

Once additional public charging infrastructure and incentives are implemented, it may be beneficial to explore alternative benefits to the metered parking privileges for EV drivers. While EVs provide environmental and community benefits by reducing pollution and noise, it is important to recognize that EVs still contribute to congestion and traffic just like any other vehicle.

Santa Monica remains one of four cities in California that still offers free parking for EVs, and one of only two cities that allows free on-street parking for both BEVs and PHEVs. The cities of Manhattan Beach and Hermosa Beach allow free metered parking for BEVs only and San Jose allows all EVs to park for free. Staff estimate that approximately $560,000 of meter revenue was forgone by offering free street parking in 2016. This impact could grow to $1.8M by 2021 as EV ownership grows over time. As more charging benefits are provided through infrastructure and resources, parking will be monitored to ensure a balanced approach toward mobility and sustainability goals.

Figure 16: Predicted Lost Meter Revenue from Free EV Parking

<table>
<thead>
<tr>
<th>Year</th>
<th>Lost Annual Meter Revenue (AV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>$0</td>
</tr>
<tr>
<td>2017</td>
<td>$200,000</td>
</tr>
<tr>
<td>2018</td>
<td>$400,000</td>
</tr>
<tr>
<td>2019</td>
<td>$600,000</td>
</tr>
<tr>
<td>2020</td>
<td>$800,000</td>
</tr>
<tr>
<td>2021</td>
<td>$1,000,000</td>
</tr>
</tbody>
</table>

Sources: Predicted EV purchase growth rate, UCLA Luskin Center for Innovation; California EV Market Share, IHS Market; Annual Meter Revenue, City of Santa Monica
d) Explore a program to adjust nighttime parking rates or provide resident charging permits for overnight charging at public facilities and curbside stations.

Public charging facilities can be utilized by neighborhood residents who lack access to charging in their buildings. Locations such as the Nielson Way lots, Santa Monica College, and local schools could offer charging facilities in high-density areas where there is limited access to residential EV charging. Reduced fees could be offered in public parking structures for overnight parking and charging.

Residential charging permits could be available for EV owners in the designated parking zones for both public lots and curbside stations (once installed). Rates should be affordable for overnight charging.

e) Expand use of EVs in carshare and rideshare services.

The City supports the growing shift toward shared-use mobility options such as carsharing (e.g. ZipCar) and shared ride services (e.g. LyftLine, Uberpool, The Free Ride). These modes present an opportunity to reduce vehicle ownership and vehicle miles traveled. The growing use of EVs in both industries reduces carbon emissions and increases demand for charging infrastructure.

Future Considerations: Autonomous Vehicles

Though not specifically addressed in this plan, the future of autonomous vehicles (AVs) will impact the City’s mobility network and sustainability goals. Charging infrastructure will likely be utilized by autonomous EVs, requiring strategic site planning and use of curb space. Future investment will need to be made to designate EV charging facilities for AVs.
for charging spaces.

Carshare providers such as WaiveCar, Car2Go, ReachNow and BluIndy operate all-electric fleets, which require EV charging. Public-private partnerships with EV carshare providers can help foster EV usage and provide EV access to residents who may not be able to purchase an EV on their own.

f) Expand the fleet-sharing system for all departments and divisions located at the Civic Center.

City staff currently manages a pool of vehicles that are available to all City staff, located within the Civic Center. Several City divisions also retain their own fleet vehicles, primarily for field inspection services.

As City staff converge into the City Services Building by 2020, fleet management will become a key strategy to effectively manage vehicle resources and the supply of available parking and charging. Instead of individual departments and divisions ‘owning’ their own fleet vehicles, Civic Center staff will be able to access a centrally managed citywide fleet.

This system will encourage greater vehicle utilization, reduce the total number of vehicles and increase supply of available parking and charging within the Civic Center. Effective energy management will be a key factor in ensuring fleet vehicles are charged when needed at rates that do not overload the grid.

Since few fleet parking locations have the existing electrical capacity to support the installation of multiple charging stations, it is important to choose systems with load sharing technology that can charge more vehicles with less infrastructure (to significantly lower equipment and installation costs).

Smart dashboards can communicate with a controller to manage charging times per station, set charging priority, and remotely turn off a station if necessary. Certain charging systems also have the capability to integrate with building management systems to help manage energy loads.
Case Studies: The Rise of EVs in Carshare and Rideshare Services

WaiveCar
Waive Car launched in Santa Monica in 2016 with a fleet of 20 EVs, and offers two hours of free driving in their all-electric fleet. WaiveCar built their own EV charging facilities at their headquarters due to the lack of public charging facilities. The location of existing public chargers in parking structures that require payment created an additional challenge for the company. A new partnership between WaiveCar and Hyundai will add 150 IONIQ EVs throughout Los Angeles by mid-2017.

ReachNow
ReachNow is a premium car sharing service that includes a fleet of electric BMW i3 vehicles and is currently operating in Seattle, Portland, and Brooklyn (the EV option is not yet available in Brooklyn). Parking is free in public spaces anywhere within the designated home area. A ReachNow service team picks up EVs with low batteries and recharges the vehicles at their stations when necessary. ReachNow drivers can see the available mileage through the app before reserving the vehicle.

Bolloré Group (BlueLA, BlueIndy & AutoLib)
In 2017, Los Angeles launched an EV carshare program called BlueLA. The program intends to serve disadvantaged neighborhoods and will scale to 100 EVs and 200 charge points by the end of 2017. The service is operated by Bolloré Group, which operates the AutoLib carshare program in Paris. AutoLib now has more than 4,000 vehicles and 130,000 active users. A similar program called BlueIndy is also underway in Indianapolis.

Membership for BlueLA will range from $0 to $10 per month and member usage fees will be $0.20 per minute, with lower rates for low-income members. Cars and parking spaces can be booked online and cars are returned to designated stations at the end of each use.

General Motors, Uber & Lyft
A new car sharing partnership between General Motors and Uber and Lyft enables drivers to rent Chevy Bolts through a service called Maven Gig. The program is live in San Diego and will launch in San Francisco and Los Angeles in late 2017. The growing usage of EVs among rideshare drivers creates additional demand for easily accessible public charging infrastructure.

Designating parking and charging spaces specifically for EV car sharing and ridesharing will leave more public chargers available to residents and visitors. In addition, it will provide convenience and lower costs for both operators and users.

ZipCar
Zipcar first introduced EVs into its fleet in 2003 with the Toyota RV4 EV and now offers the Chevrolet Volt and Honda Fit. Zipcar offers EV options in several cities across the U.S., including Chicago, Boston, and Knoxville.
Community Outreach: Develop EV outreach programs and resources for residents and businesses

- **a** Create a webpage with available EV resources, programs, and technologies.
- **b** Develop an outreach program for EV charging stations similar to the Solar Santa Monica Program called EV Santa Monica.
- **c** Develop outreach targeted to low-income residents.
- **d** Encourage access to EV carsharing for MUD residents and a program for low-income individuals.
- **e** Designate an EV Program Coordinator to manage all responsibilities related to EVSE coordination and implementation.
- **f** Establish an EV Working Group to provide direction and oversight of the implementation of the EV Action Plan.
- **g** Coordinate with regional partners to leverage procurement and funding opportunities.
Santa Monica residents and property owners need support and guidance to understand available funding to help purchase EVs and finance charging equipment and installation costs. The constantly changing landscape and range of resources can be difficult to navigate. This challenge is even greater for low-income populations and non-native English speakers.

The City currently does not have dedicated staff managing and directing EV programs, policies and projects. A dedicated staff person will be essential to implementing the plan and completing a broad portfolio of projects.

a) Create a webpage with available resources, programs, and technologies. An abundance of information about installing electric vehicle charging stations is available online, however a lack of knowledge and awareness still pervades most communities. There is considerable confusion and apprehension surrounding MUD installations. Most potential buyers are unaware of PEV models and have never driven one, do not know where or how to charge a PEV, and are more familiar with the high purchase price than the incentives or low operating costs. Most small commercial and residential property managers are also not familiar with the rebates and subsidies offered for EV charging stations.

A web-based platform is necessary to serve as a clearinghouse of information for resources and technologies for Santa Monica residents, employees, employers, and property owners. Basic information
can include types of charging stations, where and how to purchase EVs, and where to charge. In addition, resources like incentives, financing options, and technical assistance can be provided. This platform could also host one-on-one trainings and assistance for applications to state and federal EV incentives. Creating a list of EV-friendly condos and apartment buildings can also help prospective tenants who are EV-drivers or interested in purchasing an EV find a unit with existing charging facilities.

b) Develop an outreach program for EV charging stations similar to the Solar Santa Monica Program called EV Santa Monica. Solar Santa Monica is a free service that provides technical assistance for residents and businesses to help navigate the rules, incentives, and financing options to install solar panels. Services include energy efficiency recommendations, rooftop analysis, bid comparison, and financial analysis.

An EV outreach program can provide a similar service to engage and inform property owners and residents. The goal is to educate the community about the benefits of driving EVs and the incentives that are available to do so. These incentives include funding to purchase EVs and EVSE, in addition to residential EV TOU rate systems to save money on electricity. Hosting or partnering with community events to share information about EV charging can also help bridge the information gap.

Plug In America’s report states that raising awareness about EV incentive programs is imperative. Effective outreach methods include: billing inserts, newsletter blurbs, social media, webpages, event brochures, letters to EV owners, and handouts to local car dealers (Plug In America, 2016, p. 10). Property owners and residents are both uniquely positioned to facilitate EV charging in MUDs.

Plug-In America, SCE, and the Los Angeles Department of Water and Power will be launching an EV dealer education pilot, which may provide a framework or partnership opportunity for the City. Working with local car dealerships that sell EVs to increase awareness of rebates and incentive programs is key to educating potential buyers. Car dealers can also offer free test drives of EVs, a proven strategy to increase propensity to purchase.

Property owners can be stewards of sustainable transportation practices by enabling their residents to drive electric vehicles. The City and local advocacy organizations can help by educating property owners on the environmental and economic benefits of adding EV charging stations in their buildings, in addition to preparing a survey for property owners to distribute to residents.

Charging stations are an attractive amenity for Santa Monica’s “eco-minded” demographic. Due to the limited number of MUDs with EV charging facilities,
property owners can benefit from offering the added service, which is in high demand.

Directing information to property owners that explains the environmental and financial benefits of driving EVs, the municipal requirements for charging stations, and the relevant policies (such as Senate Bill 880 EV owners right to charge) will help bridge the information gap. This will better prepare property owners to participate and spearhead the shift to EV ownership.

A list of FAQs can address common concerns expressed by property owners, such as liability and insurance requirements, vandalism, estimated equipment and installation costs, and metering solutions. Creating a central location for property managers to share advice and ask questions regarding EV charging installations in MUDs would be a valuable resource.

The case studies in Appendix II exemplify the influence residents can have on their property managers or HOA. The majority of EVSE installations were the result of pressure from residents who either owned or were interested in owning EVs.

c) Develop outreach targeted to low-income residents.

Low-income populations tend to have the least amount of access and resources to own electric vehicles. Targeted information and outreach should be developed to facilitate awareness, interest and ability to own and charge EVs. This may include outreach to property owners and low-income residents, information sessions, mailers, and tabling at events.

Low- to moderate income residents may be eligible for funding through the SCAQMD EV Residential Charging Program. This program incentivizes Level 2 charging for residential garages, carports or parking spaces by providing $400-$800 for EVSE hardware costs. An additional $250 is available for low-
income residents. (The program does not cover installation costs.)

d) Encourage access to EV carsharing for low-income residents.
Purchasing an EV and necessary EVSE is still a considerable burden for low-income residents, even with local and state assistance programs. Access to EV carsharing services offers a more affordable and convenient option for some residents. Incentives can encourage property owners to offer EV carshare services in MUD development agreements if such services are offered.

A low-income carshare program could be modeled after the Breeze Bike Share buy-down program, which offers up to 90% reimbursements on bikeshare memberships. The carshare program could offer diverse payment options, such as cash, metro passes and credit/debit cards in order to increase accessibility.

e) Designate an EV Program Coordinator to manage all responsibilities related to EVSE coordination and implementation. EV charging intersects the roles and responsibilities of many departments and divisions within the City. In order to achieve the goals of this plan, a dedicated staff person should manage the various programs, policies and projects.

This staff will be responsible for: implementing and reporting on the plan, managing the City’s public charging network; implementing programs and projects; coordinating with the utility and regional initiatives; seeking funding; and developing and implementing policies.

f) Establish an EV Working Group to provide direction and oversight of the implementation of the EV Action Plan.

An EV Working Group can work with the EV Coordinator and the public to support implementation of the EV Action Plan. EV Working Group roles may involve recommending public charger locations, new technologies, and policies to support EV drivers in Santa Monica.

g) Coordinate with regional partners to leverage procurement and funding opportunities.

Coordinating with regional entities such as the Westside Cities Council of Governments (WCCOG) and the Southern California Association of Governments (SCAG) can help advance EV deployment and secure competitive grants for Santa Monica and neighboring cities.

The City and eventually, an EV Program Coordinator, should coordinate with regional initiatives to plan more integrated charging networks and share best practices related to EV charging. Preparing joint proposals for EV funding can help leverage local and regional resources and potentially secure additional grant funds, particularly through national opportunities such as the VW settlement funds.
Putting the Plan to Work

Funding the Plan
Implementing the Plan
Measuring Success
Funding the Plan
To date, EV charging and programming has largely come from the City’s General Fund through existing budgets and the Capital Improvement Program (CIP). The City received a grant from the Air Quality Management District to procure and install most of the current installations (2017). Existing utility budgets pay for electricity consumption and facilities maintenance budgets support repair and upkeep of the equipment. New sources of revenue and financing will be required to expand infrastructure and develop new programs.

City Funds & New Revenues
Staff regularly apply to Southern California Edison for rebates and incentives for energy efficiency projects. These funds are separately maintained for new energy projects. As most energy efficiency and renewable energy projects can receive separate financing, these rebates could benefit EV charging projects and programs. Additional funding needs will be met by the Capital Improvement Program (CIP).

With a smart charging system, the City will be able to create new revenue streams through the implementation of user fees and fines, LCFS credits as well as advertising opportunities. Additional revenue may come available if the City moves forward with discontinuing free metered parking for EVs. The revenues generated could be redirected to implement new EV projects and programs and help keep user fees affordable.

Grants & Outside Funds
SCE’s upcoming Charge Ready program phase 2 proposal and current Transportation Electrification program proposal, if approved by the Public Utilities Commission, will help support Santa Monica’s infrastructure needs. SCE has identified Santa Monica as a target community where there is strong interest and capacity to deploy EV infrastructure.

Additional state funding sources may help expand EV charging in Santa Monica. The California Energy Commission (CEC) awarded the San Diego-based nonprofit, Center for Sustainable Energy, $15 million to install charging stations statewide. The Cycle 1 Investment Plan of the VW settlement funding includes $200M to be used for statewide EV charging projects. Additional funding sources include CARB programs funded by greenhouse gas reduction funds and CEC programs such as the Electric Vehicle Program Investment Charge (EPIC) and Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP).

Additionally, Santa Monica has received free electric vehicle charging stations from UCLA through a grant-funded project. The City will continue to apply for State and regional agency funding that supports infrastructure and programs. The following tables outline funding requirements and potential funding sources by project and program phase.
Table 12: Conceptual 3-yr Project Cost Estimates and Funding Sources

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Proposed Chargers</th>
<th>Estimated Average Unit Cost*</th>
<th>Total Conceptual Cost</th>
<th>Funding Status & Potential New Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase IB: 2017 Installations</td>
<td>30</td>
<td>$11,560</td>
<td>$346,800</td>
<td>Funded - South Coast Air Quality Management District</td>
</tr>
<tr>
<td>Phase II: 2018 Off-street (Libraries, Parks, Lots)</td>
<td>41</td>
<td>$6,000</td>
<td>$246,000</td>
<td></td>
</tr>
<tr>
<td>Phase IIIA: 2018-2020 Curbside Stations</td>
<td>69</td>
<td>$6,000</td>
<td>$414,000</td>
<td></td>
</tr>
<tr>
<td>Phase IIIB: 2018-2020 Streetlight Stations</td>
<td>25</td>
<td>$15,000</td>
<td>$375,000</td>
<td></td>
</tr>
<tr>
<td>Phase IIIC: 2018-2020 Public/Private Partnerships</td>
<td>25</td>
<td>$3,000</td>
<td>$75,000</td>
<td></td>
</tr>
<tr>
<td>Phase IIID: 2018-2020 Public DC Fast Charging Stations</td>
<td>10</td>
<td>$50,000</td>
<td>$500,000</td>
<td></td>
</tr>
<tr>
<td>Phase IV: Retrofit existing stations (ongoing)</td>
<td>87</td>
<td>$4,026</td>
<td>$350,262</td>
<td></td>
</tr>
<tr>
<td>TOTAL Public Chargers</td>
<td>287*</td>
<td></td>
<td>$2,307,062</td>
<td></td>
</tr>
<tr>
<td>Phase IA: Civic Center Fleet Charging</td>
<td>31</td>
<td>$3,950</td>
<td>$122,400</td>
<td>Funded – 2016/2018 CIP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-$12,485</td>
<td>SCE Charge Ready Program</td>
</tr>
<tr>
<td>Total Chargers</td>
<td>318</td>
<td>Total Estimated Cost</td>
<td>$2,416,977</td>
<td></td>
</tr>
</tbody>
</table>

The 287 chargers does not include the new dual-port solar charging station at the airport.
Table 13: Budgeted Funds (Currently Committed or Available for Allocation)

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency Rebates</td>
<td>$414,544</td>
</tr>
<tr>
<td>Mobile Source Air Pollution Reduction Review Committee</td>
<td>$121,500</td>
</tr>
<tr>
<td>2016/2018 Capital Improvement Project (CIP) Fund</td>
<td>$186,690</td>
</tr>
<tr>
<td>2016/2018 Public Works Operating Budget EV Quick Start Fund</td>
<td>$150,000</td>
</tr>
<tr>
<td>South Coast Air Quality Management District Grant</td>
<td>$55,000</td>
</tr>
<tr>
<td>South Coast Air Quality Management District AB 2766 Subvention Funds</td>
<td>$26,000</td>
</tr>
<tr>
<td>Total Funds Available</td>
<td>$953,734</td>
</tr>
<tr>
<td>Total Estimated Project Cost</td>
<td>$2,416,977</td>
</tr>
<tr>
<td>Total Net New Cost</td>
<td>$1,463,243</td>
</tr>
</tbody>
</table>

*Charging maintenance & repair is provided as a service by charging station vendor, to be approved by Council. Staff may opt to discontinue this service if no significant maintenance or repair issues arise within the first year of operation.

Table 14: Operating Costs* (By end of 3-year implementation)

<table>
<thead>
<tr>
<th>Program</th>
<th>Total Annual Cost</th>
<th>Unfunded Cost</th>
<th>Funding Sources (Potential)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Family EVSE Rebate Program</td>
<td>$50,000</td>
<td></td>
<td>Existing program budget</td>
</tr>
<tr>
<td>EV Coordinator</td>
<td>$138,870</td>
<td></td>
<td>The EV Coordinator position will likely be a reassignment of an existing position rather than a new FTE.</td>
</tr>
<tr>
<td>Smart Charging Station Networking*</td>
<td>$73,947</td>
<td>$6,355</td>
<td>General Fund, EV program revenue, Low Carbon Fuel Standard</td>
</tr>
<tr>
<td>$280/yr – public charging port (264)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$205/yr – fleet charging port (31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Charging Station Maintenance</td>
<td>$85,140</td>
<td>$85,140</td>
<td>General Fund, EV program revenue, Low Carbon Fuel Standard</td>
</tr>
<tr>
<td>$645/station/yr (132)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Cost**</td>
<td>$270,718</td>
<td>$270,718</td>
<td>Cost recovery</td>
</tr>
<tr>
<td>• 318 charging ports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL Annual Operating Cost</td>
<td>$486,160</td>
<td>$436,160</td>
<td></td>
</tr>
</tbody>
</table>

*Charging maintenance & repair is provided as a service by charging station vendor, to be approved by Council. Staff may opt to discontinue this service if no significant maintenance or repair issues arise within the first year of operation.

**The City’s electricity cost for new charging stations will be higher than the existing rate of $0.05/kWh because it will be on new TOU accounts. Cost estimates are based on limited station usage data and do not include escalation rates.
Implementing the Plan

This section outlines action items, department leads, and project timeframes to implement the Plan. Implementation timeframes fall into the following categories: near-term (0-6 months); mid-term (6-18 months); and long-term (18 months-3 years).

Table 15: Division & Department Acronyms

<table>
<thead>
<tr>
<th>Department & Division Acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSE</td>
<td>Office of Sustainability & the Environment</td>
</tr>
<tr>
<td>PCD</td>
<td>Planning & Community Development Department</td>
</tr>
<tr>
<td>PW</td>
<td>Public Works Department</td>
</tr>
<tr>
<td>PW-SD</td>
<td>Streets Division</td>
</tr>
<tr>
<td>PW-CE</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>PW-FM</td>
<td>Fleet Management</td>
</tr>
<tr>
<td>SCE</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>UCLA</td>
<td>University of California, Los Angeles (UCLA Luskin Center for Innovation)</td>
</tr>
</tbody>
</table>
Table 16: Responsibilities Overview

<table>
<thead>
<tr>
<th>Department</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Sustainability & the Environment</td>
<td>Lead division responsible for development and implementation of EV charging station policies and practices</td>
</tr>
<tr>
<td></td>
<td>Strategic planning</td>
</tr>
<tr>
<td></td>
<td>Coordinate evaluation of CIP proposals necessary to meet infrastructure needs and purchase of EV charging stations</td>
</tr>
<tr>
<td></td>
<td>Coordinate with SCE and other relevant entities</td>
</tr>
<tr>
<td></td>
<td>Public outreach and education</td>
</tr>
<tr>
<td>Planning and Community Development</td>
<td>Facilitate changes to the zoning ordinance and building codes to encourage and streamline installation of charging stations</td>
</tr>
<tr>
<td></td>
<td>Review site plans, issue permits, conduct inspections for installation of chargers</td>
</tr>
<tr>
<td></td>
<td>Review potential locations for on-street charging</td>
</tr>
<tr>
<td></td>
<td>Facilitate work with carshare and rideshare services</td>
</tr>
<tr>
<td></td>
<td>Coordinate purchase and installation of charging station signage</td>
</tr>
<tr>
<td>Public Works</td>
<td>Install and maintain City-owned charging stations</td>
</tr>
<tr>
<td>• Engineering Division</td>
<td>Maintain City-owned electrical vehicles</td>
</tr>
<tr>
<td>• Streets Division</td>
<td>Evaluate City capital improvement projects and install appropriately sized electrical panels during new construction or major renovations</td>
</tr>
<tr>
<td>• Fleet Division</td>
<td>Finance</td>
</tr>
<tr>
<td></td>
<td>Manage EVSE revenue, when applicable</td>
</tr>
<tr>
<td>Fire Department</td>
<td>Maintain training on first responder protocols for EVs and EVSE</td>
</tr>
<tr>
<td>Police Department</td>
<td>Enforce EV parking and charging restrictions</td>
</tr>
<tr>
<td>PUBLIC INFRASTRUCTURE: Expand and modernize public EV infrastructure to improve user experience and sustain operations & growth.</td>
<td>DEPT. LEAD</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>a) Add new smart chargers to the network; retrofit legacy chargers with “smart” chargers.</td>
<td>OSE</td>
</tr>
<tr>
<td>b) Develop a fee structure that covers operations and maintenance costs, encourages user turnover, and supports community EV programs.</td>
<td>OSE, PCD</td>
</tr>
<tr>
<td>c) Earn credit revenue by participating in the state Low Carbon Fuel Standard program.</td>
<td>OSE, Finance</td>
</tr>
<tr>
<td>d) Add charging stations for City fleet vehicles.</td>
<td>OSE, PW-FM, PW-CE, SCE</td>
</tr>
<tr>
<td>e) Explore innovative EV charging and storage technologies to integrate into Santa Monica’s EV charging network.</td>
<td>OSE</td>
</tr>
<tr>
<td>f) Explore DC fast charging options where appropriate and feasible.</td>
<td>OSE</td>
</tr>
<tr>
<td>g) Develop guidelines and standards to support charging for a range of e-mobility options.</td>
<td>PCD</td>
</tr>
<tr>
<td>PRIVATE CHARGING: Increase EV Charging for MUDs and workplaces.</td>
<td>DEPT. LEAD</td>
</tr>
<tr>
<td>a) Develop pilot rebate program for MUDs and workplaces; include additional funding for low-income residents.</td>
<td>OSE</td>
</tr>
<tr>
<td>b) Identify qualified vendors/EV service providers to handle MUD and workplace charging in Santa Monica.</td>
<td>OSE</td>
</tr>
<tr>
<td>c) Streamline the EVSE permitting process and allow online permits for small-scale installations.</td>
<td>PCD, OSE</td>
</tr>
<tr>
<td>d) Designate off-street and on-street locations for public charging infrastructure.</td>
<td>OSE, PCD, PW-CE, UCLA</td>
</tr>
<tr>
<td>e) Implement a pilot a program to provide EV charging through streetlights.</td>
<td>OSE, PCD</td>
</tr>
<tr>
<td>f) Partner with priority destination sites to install EV charging.</td>
<td>OSE</td>
</tr>
<tr>
<td>PUBLIC POLICY: Update parking policies and practices for efficient charging station use.</td>
<td>DEPT. LEAD</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>a) Modify City Ordinance to allow for on-street EV charging.</td>
<td>OSE, PCD</td>
</tr>
<tr>
<td>b) Update zoning ordinance requirements to increase the parking spaces available for EV charging.</td>
<td>PCD</td>
</tr>
<tr>
<td>c) Review and update parking policies and signage.</td>
<td>OSE, PCD</td>
</tr>
<tr>
<td>d) Explore a program to adjust nighttime parking rates or provide resident charging permits for overnight charging at public facilities.</td>
<td>PCD</td>
</tr>
<tr>
<td>e) Expand use of EVs in carshare and rideshare services.</td>
<td>OSE, PCD</td>
</tr>
<tr>
<td>f) Expand the fleet sharing system for all city departments and divisions located at the Civic Center.</td>
<td>OSE, PW-FM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMUNITY OUTREACH: Develop EV outreach programs and resources for residents and businesses.</th>
<th>DEPT. LEAD</th>
<th>TIMEFRAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Create a webpage with available EV resources, programs, and technologies.</td>
<td>OSE</td>
<td>Near- to mid-term</td>
</tr>
<tr>
<td>b) Develop an outreach program for EV charging similar to the Solar Santa Monica program called EV Santa Monica.</td>
<td>OSE</td>
<td>Mid-term</td>
</tr>
<tr>
<td>c) Develop outreach targeted to low-income residents.</td>
<td>OSE</td>
<td>Mid- to long-term</td>
</tr>
<tr>
<td>d) Encourage access to EV car sharing for MUD residents and a program for low-income individuals.</td>
<td>OSE, PCD</td>
<td>Mid- to long-term</td>
</tr>
<tr>
<td>e) Designate an Electric Vehicle Program Coordinator position to manage all responsibilities related to EVSE coordination and implementation.</td>
<td>OSE</td>
<td>Mid- to long-term</td>
</tr>
<tr>
<td>f) Establish an EV Working Group to provide direction and oversight of the implementation of the EV Action Plan.</td>
<td>OSE</td>
<td>Near- to mid-term</td>
</tr>
<tr>
<td>g) Conduct regional coordination related to EV charging and funding opportunities.</td>
<td>OSE</td>
<td>Near- to mid-term</td>
</tr>
</tbody>
</table>
Measuring Success

This plan will need resources and coordination in order to be effective and successful. This plan will help to accelerate project development and support the City’s bid for resources with shovel-ready projects. As a short- to long-term, action-oriented plan, tracking progress and measuring success will be essential to ensure that targets and goals are met for infrastructure, ownership and usage.

Success of the EV Action Plan can be measured by tracking existing metrics and new metrics:

- Number of charging stations
 - Goal: 300 by 2020
- Percentage of EVs registered out of total vehicles registered
 - Goal: 15% by 2025

Additional metrics (no goal associated):

- Revenue earned from fees and LCFS credits
- Station usage: Number of charging sessions and length of charge
- Number of private charging stations
- Percentage of MUDs and workplaces that offer EV charging

Conclusion

The EV Action Plan attempts to capture the necessary policies and projects required to meet the fast moving changes in market demand. But it is only one component within a larger context to improve mobility and wellbeing, and reduce greenhouse gas emissions.

As innovations in vehicle technologies and mobility continue to change the way we get around, this plan will enable Santa Monica to respond to the dynamic nature of the increasingly integrated world of energy, mobility and technology.
Appendix

Appendix I: Santa Monica Proposed EV Infrastructure Map

Source: City of Santa Monica Office of Sustainability, 2017
Appendix II: State Policies & Legislation Supporting EVs

CALGreen EV Charging Station Requirements

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Mandatory Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-family Residential</td>
<td>• 3% of total parking spaces provided must be capable of supporting future EVSE (i.e. electrical system capacity, building plans, any underground conduits).</td>
</tr>
<tr>
<td>(applies to building sites with 17 or more units)</td>
<td></td>
</tr>
<tr>
<td>Single-family Residential</td>
<td>• Raceway (e.g. conduit) and electrical panel capacity to support 40-amp capacity electric circuit required for each unit</td>
</tr>
<tr>
<td>Nonresidential</td>
<td>• Raceway (e.g. conduit) and electrical panel capacity to support 40-amp PEV charging capacity required as follows:</td>
</tr>
<tr>
<td></td>
<td>• 1 EV charging space required for 10-25 parking spaces</td>
</tr>
<tr>
<td></td>
<td>• 2 EV charging spaces per 26-50 parking spaces additional EV space required per additional 25 parking spaces.</td>
</tr>
<tr>
<td></td>
<td>• If there are more than 50 parking spaces, at least 3% must be EV-ready.</td>
</tr>
<tr>
<td></td>
<td>• If there are more than 200 parking spaces, at least 6% must be EV-ready.</td>
</tr>
</tbody>
</table>

Source: Center for Sustainable Energy, Plug-In SD, June 2016
State Legislation

Assembly Bill 32 (2006): California Global Warming Solutions Act

AB 32 was the first comprehensive, long-term approach to address climate change in the country. The bill requires California to reduce its greenhouse gas emissions to 1990 levels by 2020 (a 15% reduction) through a range of clean transportation, land use and energy efficiency strategies.

CalGreen (2013)

The California Green Building Standards Code, (CalGreen) is Part 11 of Title 24, the California Building Standards Code. The 2015 CalGreen update includes both mandatory and voluntary measures that ensure residential and commercial new construction projects are prepared for EV infrastructure.

Local jurisdictions have authority to adopt their own PEV-readiness building code standards that go beyond CalGreen’s mandatory requirements. The code requires pre-wiring to accommodate future installations of a charging circuit and electrical retrofits to support EVSE.

SB 880 (2012): Owner’s Right to EV Charging

SB 880 prohibits homeowner associations from imposing any condition that “effectively prohibits or unreasonably restricts” installation of charging in a homeowner’s designated parking space. If the charging unit is installed in a common area, the law states that certain conditions can be imposed, e.g. a $1 million homeowner liability policy that names the Homeowner Association as an additional insured.

Senate Bill 454 (2013): Electric Vehicle Charging Stations Open Access

The Electric Vehicle Charging Stations Open Access Act was created by Senate Bill 454 signed in 2013. The law prohibits the charging of a subscription fee at EV charging stations. The legislation calls for an open system for electric car charging payment via credit card.

Senate Bill 1275 (2014): Vehicle retirement and replacement: Charge Ahead California Initiative

SB 1275 established a goal to place 1 million zero-emission and near-zero-emission vehicles on the road. The bill created an enhanced fleet modernization program for the retirement of high polluting vehicles and authorizes increased funding for low-income individuals and families to purchase clean low- and zero-emissions vehicles.

California Building Code Chapter 11B-228 (2016): ADA Compliance for EV Charging Stations

As of January 1, 2017, all new EVSE installations must comply with the State Architect’s ADA Accessibility Building Standards. A minimum of one van-accessible space must comply with ADA Section 11B-812 for every 1 to 4 EV charging stations at a facility. One standard accessible space is required for every 4 to 25 spaces, in addition to one ambulatory space for every 26 to 50 stations. The State’s Parks Department is now budgeting $30,000 for each new ADA compliant parking space.
Appendix IV).

Assembly Bill 1452 (2017): Parking: Exclusive Electric Charging on Public Streets
AB 1452 authorizes local jurisdictions to dedicate on-street parking spaces on public streets for the exclusive purpose of charging a parked electric vehicle, provided appropriate signage is installed. The bill also authorizes the removal of a vehicle from a designated stall or space on a public street if the vehicle is not connected for electric charging purposes. This bill helps facilitate enforcement of any regulations related to use of public EV stations proposed in this plan.

Assembly Bill 1088 (2017): Multiunit residential housing: energy programs
AB 1088 requires the Energy Commission to adopt regulations to enable access to combined program funding for zero- and near-zero emission vehicle infrastructure, among other programs for multiunit residential properties.

Assembly Bill 1239 (2017): Building Standards: Electric Vehicle Charging Infrastructure
AB 1239 requires the California Department of Housing and Community Development and the California Building Standards Commission to develop and adopt building standards regarding EV-ready parking spaces for existing parking structures that are located adjacent to or associated with multifamily dwellings and nonresidential buildings.

The Energy Commission must report to the Legislature by January 1, 2019, on the extent to which renters and owners of low-income multiunit residential properties have sufficient technical and financial support to participate in existing programs and complete upgrades. The bill will likely provide incentives and programs to help multi-family building owners and tenants reduce their energy use and install EV chargers, among other benefits.

Assembly Bill 1184 (2017): California Electric Vehicle Initiative
AB 1184 allocates $3 billion over 12 years to subsidize zero-emissions vehicles. The legislation passed the Assembly and is pending Senate approval. Funding would come from the Cap and Trade Program and buyers would receive rebate checks at the point of purchase.

AB 615 extends the income caps for the Clean Vehicle Rebate Project to continue providing air quality and greenhouse gas emissions reduction benefits through programs that encourage the purchase of zero-emissions vehicles.

Assembly Bill 630 (2017): Vehicle Retirement and Replacement
AB 630 codifies a clean-car program that benefits low-income residents by helping them replace high-polluting vehicles with...
cleaner and more efficient vehicles.

AB 1082 authorizes pilot programs to allow for new electric vehicle charging stations at state parks and beaches.
The PEV Collaborative provides cost recovery models and case studies for both individually assigned charging units and shared charging units, which are discussed below.

Individually Assigned Charging Units
Installation options for individually assigned charging units differ based on who pays for the installation costs and electricity. Some case studies include a combination of the various approaches and are listed below the most relevant option.

1. **Units are wired directly to the existing residence panel meter or through a separate electric meter. In this case, the resident EV owner is the electric utility customer and pays for the equipment and installation.**

 Case Study: Brannan, San Francisco
 The HOA at 200 Brannan Street installed six charging stations in deeded parking spaces based on resident demand. The HOA selected EverCharge as the vendor to install the system and handle inspections, customer support, billing and liability insurance. Individual EV owners paid between $1,000-$2,800 for the installation based on the distance of the conduit run and an additional $1,000 to purchase the unit. Residents pay a $15 fixed monthly charge plus a flat electricity rate for usage.

2. **Units are sub-metered and the property owner is the electric utility customer. The EV owner pays for the 120VAC outlet or charging unit installation.**

 Case Study: Broadstone Corsair, San Diego
 Property managers at this new development were motivated to install 16 dual chargers based on resident interest, a green corporate culture, and pursuit of LEED certification. Installation was relatively easy because the building was relatively new with accessible service panels. Additional chargers were installed in anticipation of future demand. ChargePoint was selected to manage metering and billing. Infrastructure costs were covered mostly by grants from the California Energy Commission and ChargePoint. EV owners plug in as needed or have the option to reserve stations for a small monthly fee. Electricity costs $0.25/kWh. This is a good model for new buildings to follow.

3. **Units are sub-metered; the resident is the utility customer and buys the corresponding parking space. The property owner installs several new service meters and assigns them to resident EV owners. The EV owner pays a fee to the property owner to cover his or her...**

Appendix III: MUD Case Studies and Best Practices for EV Charging
portion of the capital expense to install the meter.

Case Study: CityFront Terrace, San Diego
Motivated by resident interest and a proactive community manager and facility manager, CityFront Terrace installed one level 2 charger and pre-wired 19 electric meters for level 2 charging. Residents pay a portion of the upfront capital cost and purchase their own units ($4,000 per meter), which they can take with them if they move. Residents must secure liability insurance since the units are in a common area. Residents receive a monthly bill directly from their utility, SDG&E, at a discounted EV time-of-use rate. The CityFront manager encountered challenges such as assigned underground spaces located far from electric meters on upper floors and different wiring needs for different brands of charging stations. In addition, some common-area meters were on commercial electric rates and will be subject to demand charges and time-of-use impacts.

4. Networked charging units with wireless communication capability are individually assigned with embedded metering. The property owner is the utility customer and determines how much to charge residents for electricity based on reported charging use. Property owners can set a cost recovery rate that covers installation, electricity and network access costs through shared usage fees.

5. Individually assigned units are wired into a common area electrical service with no metering. The property owner is the utility customer and charges a flat fee to recover installation, energy and network access costs.

6. A third-party service provider is contracted by the property owner to assign a monthly fee based on selected services. The utility customer can be either the resident or property owner.

Shared Charging Units
Installing shared charging units requires more coordination among resident EV owners and the property managers, however it is more cost effective and a better use of space compared to individually assigned units. Shared charging stations can also serve as a marketing tool to attract and retain current and future EV drivers and inspire existing residents to drive EVs because they know the charging infrastructure is already in place.

Different options for installing shared charging units are as follows:

1. 120VAC outlets or non-networked charging units are installed in common area parking spaces accessible to multiple EV owners. The property owner is the utility customer
and adds a flat fee to the rent or lease to cover operating costs. EV owners can coordinate a charging schedule or sign-up process.

2. Common area networked charging units are available for multiple EV owners and managed by an electric vehicle service provider (EVSP). The property owner is the utility customer. EV owners pay a monthly flat fee or per use. They access the EVSE network through a subscription service, electronic ID card or credit card. Tracking and billing capabilities are available in some of the newer, higher-cost systems.

Case Study: The Elysian, Los Angeles
The property owner, Linear City Development, is a strong supporter of sustainable living and transportation options. This is exemplified through their unbundled parking policy, Nissan Leaf car share program, and 16 level 2 EV chargers onsite. ChargePoint operates the networked system via a wireless router on one of the stations. This program is unique because charging is free for residents. Stations are available to non-residents for a fee per kilowatt-hour. The management chose to provide free charging to residents as an amenity to attract renters and set a new standard for rental properties to include EV charging access.

3. A third-party service provider handles all charging service and billing operations based on an agreement with the property manager.

Case Study: The Towers at Costa Verde, San Diego
The Towers at Costa Verde has 10 level 2 chargers and 10 pre-wired stations. Management wanted to provide EV charging as an amenity to residents and prospective EV owners. EV charging stations are located in a common area, replacing previous valet parking spots. The Towers used NRG eVgo’s Ready for Electric Program to install the stations and manage billing each month. One smart meter tracks electricity use for all 10 charging units. The utility bills the property management, NRG bills individual resident subscribers based on their monthly usage, and then reimburses the property management. NRG eVgo covered the upfront costs of $21,000 (~$2,100 per charger).

Best Practices for Implementing EV Charging in MUDs

Charge Ready Parking Spaces
Per CalGreen requirements, property owners should add charge-ready parking spaces (spaces with electrical service wiring ready for EV charging) during new construction and major retrofits. CityFront Terrace and The Towers at Costa Verde installed pre-wired connections ready for future charging.
stations. This reduces future installation and wiring costs for additional stations.

Resident Survey
All MUD property owners should conduct resident surveys to understand current and future demand for EV charging stations in their buildings. The PEV Collaborative has sample surveys available on their website for MUD owners.

Parking - Assigned vs. Common Area Spaces
The building owner should communicate with resident EV owners to determine whether assigned EV charging spaces or common area spaces work best. Willingness to help pay for the stations will depend on the property owner’s interest in providing EV charging as an amenity to residents. Installing personal stations for all EV owners will be more expensive than communal charging stations, though it is preferable to residents. This decision will weigh the convenience of private stations against the lower cost of shared stations. For individually assigned spaces, residents should be charged a percentage of the equipment cost or a flat monthly fee to help the building owner recoup infrastructure and operating costs.

Third-party Service Provider
Selecting a third-party service provider to handle installation, maintenance, and billing will facilitate a turnkey process for property owners. Some EVSPs may install the equipment at no upfront cost (e.g. NRG eVgo at the Towers in Costa Verde), depending on future funding availability. As noted by several of the case studies, a third-party service provider has been a popular option for property owners. 200 Brannan in San Francisco selected EverCharge to offer full-service installation, permit and city inspection, customer support, management, billing, and liability insurance. Broadstone Corsair in San Diego, Millenium Tower in San Francisco, and The Elysian in Los Angeles selected ChargePoint to monitor metering and billing. The EVSP option allows the property managers or HOA to have minimal responsibility tracking energy usage and the billing process.

User Management
Communication and cost-recovery systems can be utilized to manage various users accessing one charging device. One strategy to facilitate turnover is to bill for time the vehicle is connected rather than active charging time. This encourages drivers to move their cars once the charge is complete and also increases revenue potential for the property owner.
Appendix IV: California Building Code Ch. 11B-238.3.2.1 - ADA Accessibility Requirements for EV Charging Stations

<table>
<thead>
<tr>
<th>Total Number of EVCS at a Facility</th>
<th>Minimum Number (by type) of EVCS Required to Comply with Section 11B-812¹</th>
<th>Van Accessible</th>
<th>Standard Accessible</th>
<th>Ambulatory*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 4</td>
<td></td>
<td>1*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 to 25</td>
<td></td>
<td>1</td>
<td>1*</td>
<td>0</td>
</tr>
<tr>
<td>26 to 50</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1*</td>
</tr>
<tr>
<td>51 to 75</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2*</td>
</tr>
<tr>
<td>76 to 100</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3*</td>
</tr>
<tr>
<td>101 and over</td>
<td></td>
<td>1, plus 1 for each 300, or fraction thereof, over 100</td>
<td>3, plus 1 for each 60, or fraction thereof, over 100</td>
<td>3, plus 1 for each 50, or fraction thereof, over 100</td>
</tr>
</tbody>
</table>

Source: Division of the State Architect, 2015
Appendix V: Existing EVSE Rebate Programs

<table>
<thead>
<tr>
<th>Company</th>
<th>Program</th>
<th>Funding</th>
<th>Eligible Applicants</th>
<th>Eligible Facilities</th>
<th>Min. Reqs.</th>
<th>Rebate Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAAQMD</td>
<td>Charge!</td>
<td>$5M</td>
<td>Businesses, non-profits, and public agencies</td>
<td>MUDs, Workplaces, Destinion Facilities, Transit Parking, Transportation Corridors</td>
<td>Stations must operate for at least 3 yrs; achieve min. usage requirement</td>
<td>Up to 75% of cost of equipment, installation, and operation of EVSE; must qualify for at least $10k in funding up to $500k/yr</td>
</tr>
<tr>
<td>Austin Energy</td>
<td>Plug-in Austin</td>
<td>NA</td>
<td>MUD residents and property owners, workplaces</td>
<td>MUDs, Workplaces, Retail Properties</td>
<td>Host must allow AE to install monitoring devices or provide quarterly usage data report; L1, L2 and DCFC all eligible</td>
<td>Up to 50% of the cost and installation of L1 and L2 charging stations, up to $4k for existing facilities and $2.5k new construction</td>
</tr>
<tr>
<td>LADWP</td>
<td>Charge Up L.A.I.</td>
<td>$21.5M</td>
<td>MUD residents and property owners, workplaces</td>
<td>Any residential property or workplace, public locations</td>
<td>L2 charger; EVs must purchased on or after October 1, 2015</td>
<td>Up to $500 of the equipment cost per wall-mounted charger for residential customers; up to $4,000 per L2 charger for commercial or MUD customers; commercial and MUD properties must have a minimum of 3 parking spaces up to 75% of the total installation cost ($4,500 max)</td>
</tr>
<tr>
<td>British Columbia Clean Energy Vehicle Program</td>
<td>Multi-Unit Residential Building Charging Program</td>
<td>$688,500</td>
<td>Owners, building managers and strata councils, individual MUD residents</td>
<td>MUDs</td>
<td>L2 chargers</td>
<td>Up to 75% of the total installation cost ($4,500 max)</td>
</tr>
<tr>
<td>Anaheim Public Utilities</td>
<td>Personal Use EV Charger Rebate Program</td>
<td>NA</td>
<td>Residential, commercial, and industrial customers</td>
<td>Personal or business facility (not public)</td>
<td>L2 chargers</td>
<td>Up to $500 of the equipment and installation cost, permit fees also waived</td>
</tr>
<tr>
<td>Pasadena Water and Power</td>
<td>Plug-in EV Incentive Program</td>
<td>NA</td>
<td>Residential and commercial customers</td>
<td>Residential, MUDs, workspaces</td>
<td>L2 chargers - wall-mounted or hardwired</td>
<td>Up to $400</td>
</tr>
<tr>
<td>Burbank Water and Power</td>
<td>BWP EVSE Rebate</td>
<td>NA</td>
<td>Residential and commercial customers</td>
<td>Residential, MUDs, workspaces</td>
<td>L2 charger</td>
<td>Up to $500 for residential; $1,000 for commercial (equipment costs only); limit of 1 rebate per residential account and 4 rebates per MUD or commercial account</td>
</tr>
</tbody>
</table>
Appendix VI: Southern California Edison Proposed EV Pilot Programs

In early 2017, SCE proposed several one-year EV pilots to the California Public Utilities Commission, and expects a decision in late 2017. SCE proposed a five-year Transportation Electrification program focused on medium-duty, heavy-duty, and non-road vehicles and three new commercial EV rates. A decision on these proposals is expected in 2018.

<table>
<thead>
<tr>
<th>Pilot Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Make-Ready Pilot</td>
<td>Rebate for residential customers living in single-family residences or multi-unit dwellings to install EV charging make-ready infrastructure to confirm customer interest in a home-charging program, validate cost assumptions, and evaluate EV customer satisfaction with Time of Use (TOU) rates, costing $4 million.</td>
</tr>
<tr>
<td>Electric (EV) Driver Rideshare Reward Pilot</td>
<td>Monetary reward to rideshare or taxi drivers who use an EV and exceed a specific number of rides during a given time period. The pilot will encourage EV adoption by rideshare drivers and increase EV-miles traveled within SCE’s service territory, in support of state energy and clean energy policy goals and also to evaluate the charging needs of EV drivers, costing $4 million.</td>
</tr>
<tr>
<td>Urban Direct Current Fast Charger (DCFC) Cluster Pilot</td>
<td>Deploys five public access DCFC sites for up to 50 DCFC plugs total, clustered in urban areas. Participating customers (potentially cities, public lot operators and EV service providers) will have the opportunity to propose sites and select qualified DCFC stations. The pilot will determine interest in DCFC in urban areas and evaluate charging behaviors, costing $4 million.</td>
</tr>
<tr>
<td>Electric Transit Bus Make-Ready Program</td>
<td>Deploys make-ready infrastructure to serve in-depot and on-route charging equipment including a rebate towards the charging station for electric commuter buses operating in SCE’s service territory. The program aims to expand the number of electric buses in SCE’s service area, costing $4 million.</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Vehicle Charging Infrastructure Program</td>
<td>Proposes to deploy, own, and maintain the electric infrastructure needed to serve charging equipment for medium- and heavy-duty and non-road vehicles including a rebate towards the charging station. Total cost would be capped at $553 million over 5 years.</td>
</tr>
<tr>
<td>Rate Design to Promote EV Adoption</td>
<td>Three new, optional commercial EV rates will apply to different EV customer sizes. The new EV TOU periods offer more accurately price signals reflecting system grid conditions and eliminate demand charges for a five-year intermediate period. SCE will then phase in demand charges over a five-year intermediate period. After the end of the tenth year, rate schedules will reflect stable demand charges.</td>
</tr>
</tbody>
</table>
Appendix VII: Draft EV Action Plan Public Comments and Responses

The draft EV Action Plan was posted on OSE’s website from September 15-October 15, 2017. The City received comments from residents, organizations, EV service providers, utilities, and other local stakeholders. Below is a summary of comments received and how the City has addressed or plans to address the feedback.

<table>
<thead>
<tr>
<th>COMMENT</th>
<th>CITY of SM RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Don’t upgrade before adding new stations</td>
<td>Deprioritized in project phases; ongoing process</td>
</tr>
</tbody>
</table>
| Plan requests too few chargers over too long of a time period | Moved goal up to 2020
This is not a static document; actively looking to add as many chargers as possible as quickly as possible
Take advantage of available funding sources (SCE, VW, ARB, MSRC, AQMD) |
| Add more DCFCs (draft proposal includes 2) | Increased ask from 2 to 10 DCFCs (~$50,000 each)
SCE cluster pilot opportunity – cities can propose sites for 5 dual-port chargers |
<p>| Install clusters of chargers (L2 + L3 where feasible) | Identifying locations with sufficient electrical capacity |
| Residential charging more critical than commercial as battery range increases | Focusing on public charging in commercial areas for MUDs |
| Ensure that EVSE has multiple connector types | Stations offer the standard SAE J1772 level 2 connectors, which fit most EVs |
| Add charging stations at gas stations | Third-party providers contacting gas stations to gauge interest |
| Several methods of payments should be recommended to EVSE users such as RFID card, smartphone/app authentication, pass code or credentials, or credit card (on the station or by telephone) | Most stations accept multiple methods |
| Add streetlight chargers | Exploring L1 + L2 based on electrical capacity |
| Take advantage of outside funding sources (e.g. CEC, CARB, SCAQMD, and CPUC) | Addressed in Plan |
| Implement the upgraded electrical service during new construction to significantly reduce installation cost (as opposed to implementing in existing infrastructure, unless there are significant alterations, expansions, or retrofits) | Code update addressed in Plan |
| The City should have a 2 year and 5 year plan for implementing EVSE infrastructure | The Plan is not a static document and will be evolving over time |</p>
<table>
<thead>
<tr>
<th>COMMENT</th>
<th>CITY of SM RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnover issues: Set fees to discourage overstaying and accessory charging</td>
<td>Will introduce fee after observing usage, likely kWh (most equitable). Penalty fee for overstaying will be set immediately after smart chargers are installed</td>
</tr>
<tr>
<td>Need strict enforcement/ticketing of vehicles which are not electric parked in EV charging spaces, as well as EVs which are parked in a charging space and not charging</td>
<td>Engage code compliance and PD</td>
</tr>
<tr>
<td>Free parking is a valuable incentive</td>
<td>Does not benefit overall mobility goal to get people out of cars, still contributes to congestion</td>
</tr>
<tr>
<td>Include medium- heavy-duty electrification</td>
<td>BBB is conducting an electrification feasibility study. Charging requirements for heavy-duty vehicles are beyond the scope of the EVAP</td>
</tr>
<tr>
<td>Add metrics to quantify benefits</td>
<td>Can save 25,691 metric tons of CO2 by reaching the goal of 15% EV adoption by 2025 (13% increase)</td>
</tr>
<tr>
<td>Partner with SSMUSD and SM</td>
<td>Call with SMMUSD 10/17 Concerns re: safety, vandalism, parking Exploring opportunities</td>
</tr>
<tr>
<td>The amount charged for residents to use electricity for charging their cars should be no more than the cost of electricity.</td>
<td>It will not be more than gas.</td>
</tr>
<tr>
<td>Residents of MUDs who can confirm that they either have no parking space, the landlord will not allow an installation of a charger, or the installation costs exceed a certain threshold (more than $500) should be able to access charging at no cost for at least 5 years</td>
<td>Explore alternative pricing structures</td>
</tr>
<tr>
<td>Keep public parking facilities open all night for EV charging</td>
<td>Safety/vandalism concerns</td>
</tr>
<tr>
<td>The City needs to coordinate signage and have uniformity and compiling with State law</td>
<td>Addressed in Plan</td>
</tr>
<tr>
<td>Allow preferential parking permits for overnights parking in residential neighborhoods</td>
<td>Discuss with PCD and Parking</td>
</tr>
<tr>
<td>Rent-control issue (exempt from AB 2565, which mandates property owners to allow tenants to install charging stations at their own expense)</td>
<td>Exploring legal options to influence legislation and remove this exemption</td>
</tr>
<tr>
<td>Consider a process that limits the number of in-person permit appointments to a maximum of one</td>
<td>New streamlined permitting process adopted on September 12, 2017</td>
</tr>
<tr>
<td>COMMENT</td>
<td>CITY of SM RESPONSE</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Outreach</td>
<td></td>
</tr>
<tr>
<td>Enhance focus on low-income residents</td>
<td>Add one-on-one training and technical assistance programs for applications to state and federal EV incentives</td>
</tr>
<tr>
<td>Consumers’ lack of understanding and lack of information about EVs is a major barrier</td>
<td>Add workshops, partner and host more community EV events. Utilize social media Provide materials with EV models, price, incentives</td>
</tr>
<tr>
<td>Partner with car dealerships to promote awareness of EVs (test drives, incentive information, etc.)</td>
<td>Explore ways to support dealerships with useful info and materials to distribute</td>
</tr>
<tr>
<td>Create an electric vehicle commission which would work with the EV Coordinator and the public on charger locations, new technologies, as well as work with the City Council on EV policy</td>
<td>Included recommendation in Outreach section to create an EV Working Group.</td>
</tr>
</tbody>
</table>
Resources

Canbing Li, Yijia Cao, Mi Zhang, Jianhui Wang, Jianguo Liu, Haiqing Shi & Yinghui Geng (Scientific Reports 5, Article number: 9213, Feb. 2015). Hidden Benefits of Electric Vehicles for Addressing Climate Change. https://www.nature.com/articles/srep09213?utm_source=Climate+Resolve+Subscribers+2017&utm_campaign=3f18de3525-EMAIL_CAMPAIGN_2017_02_21&utm_medium=email&utm_term=0_9669f84ea2-3f18de3525-104234129

http://docketpublic.energy.ca.gov/PublicDocuments/15-MISC-04
TN211161_20160420T113312_Burbank_Water_and_Power_Presentation.pdf

https://www.portlandoregon.gov/bps/article/619275

Department of Energy (2017). eGallon Calculator
https://energy.gov/maps/egallon

https://www.epri.com/#/pages/product/3002006881/

https://www.nyserda.ny.gov/-/media/Files/Programs/ChargeNY/Permit-Process-Streamlining.pdf

Environmental Protection (2017). “Our Community CarShare Sacramento” Provides EVs to Affordable Housing Community.

Knowles, Hannah (2017). Why Sacramento leaders believe curbside vehicle chargers will be a game-changer.

https://chargedevs.com/newswire/california-city-incorporates-charging-stations-into-streetlights/

https://www.opr.ca.gov/docs/Governor’s_Office_ZEV_Action_Plan_(02-13).pdf

https://www.opr.ca.gov/docs/ZEV_Guidebook.pdf

Plug In America (2016). Evaluating Methods to Encourage Plug-in Electric Vehicle Adoption.

https://www.forbes.com/sites/rrapier/2017/02/05/u-s-electric-vehicle-sales-soared-in-2016/#333a38c5217f

Shared-Use Mobility Center (2016). Shared Mobility Action Plan for Los Angeles County.
http://innovation.luskin.ucla.edu/sites/default/files/Lessons%20from%20the%20Clean%20Vehicle%20Rebate%20Program%206-16.pdf

Sierra Club (2016). Why Are Electric Vehicles Only 1% of Total Monthly U.S. Auto Sales?
https://www.ecowatch.com/electric-vehicle-sales-1973900633.html

http://scag.ca.gov/programs/Pages/RegionalElectric.aspx

https://www.sce.com/wps/portal/home/residential/electric-cars/tools-resources/EV-

Tuohy, John (Indy Star: 2016). BlueIndy stations could be uprooted.

UCLA Luskin Center for Innovation (2017). Siting Analysis for Plug-in Electric Vehicle Charging Stations in the City of Santa Monica.
http://innovation.luskin.ucla.edu/sites/default/files/Siting%20Analysis%20for%20PEV%20Charging%20Stations%20in%20the%20City%20of%20Santa%20Monica_0.pdf

