Colorado Avenue Viaduct
Santa Monica, California
City Landmark Assessment and Evaluation Report

Evaluation Report
Parcel Map
Sanborn Maps
Photographs

Prepared for:
City of Santa Monica
Planning Division

Prepared by:
PCR Services Corporation
Santa Monica, California

October 2011
Colorado Avenue Viaduct
Santa Monica, California
City Landmark Assessment and Evaluation Report

Environmental Setting

The subject property, the Colorado Avenue Viaduct (Viaduct), is a two-lane vehicular ramp constructed of poured-in-place reinforced concrete in 1939. The Viaduct is identified as bridge number 53-448, labeled on the bridge. Located at the west end of Colorado Avenue, the Viaduct provides vehicular and pedestrian access to the Santa Monica Pier from Ocean and Colorado Avenue. The east end of the Viaduct is situated at the Ocean and Colorado Avenue intersection. The Viaduct spans Appian Way, a large public parking lot, and pedestrian pathway.

Regulatory Setting

The Santa Monica Pier was nominated a Los Angeles County Landmark in 1975 and designated a City of Santa Monica Landmark in August, 1976. The Landmarks Commission found that the Pier “exemplifies, symbolizes and manifests elements of the cultural and social history of the city in that it has been utilized as a social and recreational center for Santa Monica from its conception in 1890; has architectural interest and value notably in the merry-go-round structure and the Sinbad building; identifies with important events in local history in that it was the site of the first musical variety program in July, 1948; identified with famous persons in that William Saroyan lived in one of the apartments above the merry-go-round; and symbolizes elements of the city’s economic history in that on the site was a structure that predates the founding of the city, namely the Shoo Fly pier which was utilized as a shipping point.”

The Santa Monica Looff Hippodrome (Carousel) Building was designated a National Historic Landmark in March, 1987, and was listed on the National Register of Historic Places in 1988. However, the Viaduct was not evaluated or designated as a feature of the Santa Monica Pier.

The Viaduct was previously assessed in a Draft CEQA/NEPA environmental review and was found to be “not historically significant under national or state requirements.”

2 City of Santa Monica, Historic Preservation Element, Prepared by PCR Services Corporation and Historic Resources Group, September 2002; Environmental Planning Associates. Santa Monica Pier development project: final environmental impact report; draft environmental impact report and responses to comments on the draft EIR, 1991, p. IV-P-1.

3 Ibid.
subject property is included in the California Department of Transportation’s local agency bridge inventory as Bridge Number 53C1900, the Appian Way/Promenade, built 1939, which was deemed not eligible for the National Register of Historic Places by Caltrans. In the Caltrans Local Agency Bridge List, the Appian Way/Promenade is described a concrete continuous Slab type bridge, 149-feet long, with a two-lane 7.3 foot wide roadway that carries Colorado Avenue,

Architectural Description

A viaduct is defined as a bridge supported by piers used to carry a road over a valley. The Colorado Avenue Viaduct, constructed of reinforced poured-in-place concrete, consists of a sloping ramp supported by a series of bents and paired piers. The deck is constructed of reinforced concrete, paved with asphalt, and has two vehicular lanes bounded on each side by raised concrete pedestrian walkways and painted metal balustrades with thick rectangular rails and thin balusters interrupted by the occasional metal lamp post. The scored concrete sidewalk is stamped with “Interacting Engineers Co, 1940, Los Angeles” located near the entrance. The lamp posts appear in the historic photos and are original to the bridge, although the lamps have been replaced. The balusters and rails are also original. A staircase located on the south deck walkway leads to the parking lot below. The viaduct is supported by 16 paired square concrete piers with lateral rectangular bents and ribs and has a smooth concrete underside. One pier is stamped with the date of 1939 and has a painted stencil of the bridge number 53-448. Three of the western segments between the piers were in-filled to create restrooms and storage areas. A commemorative plaque attached to a low concrete wall at the viaduct entrance has the text “Federal Emergency Administration of Public Works, Colorado Avenue Viaduct, 1939.”

Alterations

The Viaduct is in good condition and does not appear to have had any substantial alterations since its 1939 construction. The Viaduct has undergone routine maintenance and safety upgrades. The northern entrance railing has been removed. Three sections of the Viaduct were infilled. The street lamp heads were replaced and modernized. Two lateral expansion joints were inserted in the Viaduct. The permits and other associated construction documents were unavailable. The Viaduct retains integrity of location, design, setting, workmanship, materials, feeling, and association.

Statement of Historical Importance

Santa Monica. In 1875, the original townsite of Santa Monica was surveyed, including all of the land extending from Colorado Avenue on the south to Montana Avenue on the north, and from 26th Street on the east to the Pacific Ocean on the west. Between 1893 and the 1920s, the community operated as a tourist attraction, visited by mostly wealthy patrons. Those areas just outside of the incorporated City limits were semi-rural in setting and were populated with scattered residences. After the advent of the automobile in the 1920s, Santa Monica experienced a significant building boom, which included the development of the area known as Ocean Park, south of the downtown commercial district.

The close proximity to the ocean was no doubt a strong attraction to prospective year-round residents, as well. As early as 1896, a reliable interurban rail line had made it possible to commute to Los Angeles, but it was the advent of the automobile which gave significant momentum to the building boom which Santa Monica experienced in the 1920s. Whereas a significant portion of the first homes built in the older sections of the City, such as the Palisades Tract were originally used as retirement homes or vacation retreats, the tracts north of Montana Avenue and east of 7th Street were developed for year-round residents.

The commercial area, located along 2nd, 3rd, and 4th Streets between Wilshire Boulevard and Colorado Avenue, reflected the development of the City as well. Closely integrated with residences in the nineteenth-century community, the commercial district expanded with the burgeoning population. A few surviving residences changed use; some were moved to other sites.

While tourism had always been the primary industry of the city, other companies contributed to the community’s economic base, as well. A brick, terra cotta, and pottery facility was located in the southern portion of the City in the early years of the twentieth century. The Merle Norman Cosmetics Company, founded in the 1920s, had its headquarters on Main Street. Perhaps the best-known industry was Douglas Aircraft located in the southeastern portion of the city. Opening in 1923, the company became well-known for its innovations in the field of global flight and became a primary contractor for manufacturing aircraft during World War II. The Rand Corporation, a nationally known “think tank,” maintains a highly visible presence on Main Street. A small industrial section, which includes studio and entertainment-related uses, has grown up around Olympic Boulevard.

5 Portions of this section were adapted from the “Santa Monica Historical Resources Inventory 1985-1986, Final Report, pp. 28-59 and State of California, Department of Parks and Recreation, Historic Resources Inventory Form Update, Central Business District and Third Street Promenade. Prepared by Tearnen, Bricker, and Field, 1998.

Colorado Avenue Viaduct
City Landmark Assessment and Evaluation Report
page 3
and an office park has developed off Ocean Park Boulevard near the southeast corner of the City.

A postwar building boom began in 1946, with the construction of whole residential tracts of single-family residences. Multi-family housing became a major factor in planning and zoning issues as the City’s population continued to grow. While single-family neighborhoods occupy the greater percentage of residential zoned acreage, the population of multi-family areas is in fact greater. Within the past decades, Santa Monica has been transformed bit by bit. Many of the modest single-family houses have been replaced by larger homes or modern condominium units in the areas north of the Santa Monica Freeway. Neighborhoods south of the freeway have also experienced a construction growth of multiple housing types, ranging from high-rise towers to the two- and three-story townhouses, which continue to be developed today.

Santa Monica Municipal Pier and Pleasure Pier. On September 9, 1909, after sixteen months of construction, the Santa Monica Municipal Pier opened to the public. This was California Admission Day, and the thousands of people who swarmed onto the 1,600-foot-long wooden pier were in a holiday mood as they enjoyed a festive day of band concerts, swimming races, and the novelty of walking above the waters of the Pacific Ocean. Constructed at the base of Colorado Avenue, the pier was not purely for tourism, but also functioned to pump the city's sewage out to sea.

The Municipal Pier’s continuing ability to attract large crowds impressed Charles Looff, a pioneer amusement entrepreneur who had built Coney Island’s first carousel in Brooklyn, New York and then opened a carousel factory nearby. Sensing vast potential for amusement attractions on the Southern California coast, he moved his operations to Long Beach in 1910, when he began to consider building a pleasure pier of his own.

In 1916, after lengthy negotiations with the City of Santa Monica, he started construction alongside the Municipal Pier. Looff’s Santa Monica Pleasure Pier featured the landmark Hippodrome building, a California-Byzantine-Moorish-style fantasy that has housed a succession of vintage merry-go-rounds and Wurlitzer organs. In the beginning it also boasted the Blue Streak Racer wooden roller coaster and the Whip and Aeroscope thrill rides. More attractions followed and soon the Looff Pier was enlarged to its current size of 270 feet by 1,080 feet.

As arts and entertainment flourished in Santa Monica, so did the Pier. In 1924 the vast and ornate La Monica Ballroom opened to become the site of some of the earliest national radio and television broadcasts. It also played host to throngs of dancers who came nightly to enjoy the big band sound, including “Western Swing.”
The Pier’s popularity continued to be high throughout the 1930, but severe storms, heavy use and changing tastes began to take their toll. The Blue Streak roller coaster was torn down in 1930, and the La Monica Ballroom closed down some 33 years later.

While the Municipal Pier continued to be owned and operated by the City of Santa Monica, the Looff Pleasure Pier had a succession of owners. In 1953, it was taken over by the City, which leased it to a private operator who, among other things, offered rooms for rent overlooking the merry-go-round. Painters, musicians, and writers, including novelist William Saroyan, occupied these rooms.

Approximately twenty years later, the Santa Monica City Council ordered the demolition of both deteriorating piers. Outraged by this move, residents fought back with a “Save Our Pier Forever” initiative, with one of its objectives being to establish the Pier as a Los Angeles County Historical Landmark. In 1981, the City appointed the Pier Task Force (later named the Pier Restoration Corporation or PRC) to provide management and oversee restoration, including stripping the famed Hippodrome building back to its original framework and reconstructing it piece by piece. Although two fierce storms halted work in 1983, washing away 100,000 square feet of the ocean end of the Pier, good news would soon follow as the Hippodrome and its carousel were designated a National Historic Landmark by the National Park Service.

In 1988, the Santa Monica Pier Development Program was adopted by Santa Monica’s City Council. As part of the Development Program, a new concrete substructure was built, adding strength and stability to a pier that could now withstand violent storms. A variety of retail, food and entertainment outlets, as well as a police substation and a world class amusement park were constructed on the Pier to enhance the overall experience for a crowd that has grown to 3 million visitors a year.

Today, the Santa Monica Pier is once again on the upswing as a recreational and entertainment venue. Each Thursday night throughout the summer, its “Twilight Dance Series” attracts over 10,000 people to concerts that feature popular performers in every musical genre. Many companies and non-profit organizations choose the Pier as a unique location for special events, and it continues to be a location favored by still photographers and film crews, who choose to use the Pier extensively as a backdrop for magazine layouts, movies, television shows, commercials and videos.

Transportation Improvements in Santa Monica. As recreation and business boomed in Santa Monica, transportation infrastructure quickly improved and developed. A deep arroyo, occupied today by the Santa Monica Freeway, once separated Santa Monica’s commercial district and the Ocean Park neighborhood. In the late 19th century, the arroyo
functioned as a track bed for the Southern Pacific Railroad (SPRR) and the Pacific Electric Railway. While the immediate vicinity of the arroyo was sparsely populated, it was in proximity to the city’s earliest resorts. The Arcadia Hotel, circa 1887, was located nearby on a bluff overlooking the Pacific Ocean to the south of present day Colorado Avenue until it was demolished in 1908.

The rapid growth of Santa Monica during the 1920s generated an increased need for transportation connectivity and the Main Street Bridge, circa 1926, created a link, via Main Street, between the city’s growing commercial core and Ocean Park. Upon completion, the Main Street Bridge extended Main Street across the arroyo. Traveling south, Main Street bisected the mostly vacant area owned by the SPRR until it reached the former Santa Fe Railroad’s right of way and a small residential pocket that occupied the southeast corner of the quadrant. From there, Main Street turned diagonally southwest to connect with the existing segment of Main Street in Ocean Park. The Bridge still occupies its original location despite numerous changes to its setting over the past eight decades.

The challenging topography from the Pacific Ocean inland to the vicinity of the Fourth Street Bridge created the need for a variety of permanent crossings since at least the 1890s. An 1891 Sanborn map depicts a thin north-south bridge over the natural arroyo, occupied today by the Santa Monica Freeway. An elevated boardwalk that extended from the bridge provided access from the bluff to the beach and Arcadia Bath House below. By 1895, a more substantial wooden bridge in the same vicinity was built. This bridge, known as the Ocean Avenue Bridge, had three separate lanes for the passage of wagons, automobiles, and pedestrians. The wooden bridge was replaced by a concrete structure in 1902 (demolished 1934). By the late 1930s, with the former rail passage widened and converted to automobile use, the road below was known as Olympic Boulevard. Olympic Boulevard ran through the tunnel until it was rerouted in the 1960s. In 1966, the Santa Monica Freeway reached the Pacific Coast Highway via the tunnel (known today as the McClure Tunnel).

The Colorado Avenue Viaduct and Colorado Grade Separation Project. The Colorado Avenue Viaduct is associated with early 20th century recreation and transportation improvements in the City of Santa Monica. The 600-foot Colorado Avenue Viaduct, constructed in 1939, was one facet of the complex transportation project, the Colorado Grade Separation Project, designed to improve access between the coast and city streets.6 Reported by state highway engineers as one of the most “dangerous traffic snarls,” the Colorado Grade Separation Project untangled the three routes that carried traffic from the Ocean Avenue to the coast.

Construction of the Colorado Avenue Viaduct began on September 19, 1939, closing the entrance to the Municipal Pier and routing traffic down Moss Avenue.\(^7\) Tourism declined as a result of the entrance closure, so the City reduced rents for businesses by five percent. The Colorado Avenue Viaduct formally opened on June 12, 1940. The City of Santa Monica Commissioners commended the engineering milestone and boasted “a new and far-better-than-before roadway to the Municipal Pier.”\(^8\)

PWA/WPA Viaducts and Bridges

As part of the PWA program to fund the construction of new streets and highways, new bridges were built throughout the United States between 1933 and 1943. The bridges were largely formed concrete and designed in the PWA/WPA Moderne or Depression Moderne style. The style, which combined elements of Streamline Moderne with Classical order and proportion, usually included low concrete walls with Moderne style balusters and handrails divided by thick pylons. Many of the PWA-era bridges also included fluted, hexagonal, or octagonal concrete light poles rising above the low walls. Structurally, PWA/WPA concrete bridges tended to be supported by spaced bearing walls, thick rectangular columns, or wide-spanning arches. In addition to the PWA/WPA bridges that incorporated decorative elements of the style, many bridges were utilitarian in design and were conceived as purely functional projects to connect two points. These utilitarian projects, while not incorporating the decorative elements of the style, were significant for their engineering as they were located in geographically complicated settings.

One good example of a PWA/WPA bridge in Los Angeles is the Riverside-Zoo Drive Bridge, which was designated as Los Angeles Historic Cultural Monument 910. Built in 1938 and partially funded by the WPA, this reinforced concrete bridge incorporated elements of PWA/WPA Moderne style. The bridge is supported by four bearing walls connected by five closed arches. The bridge has six pairs of low pylons with raised zigzag form work. Each pylon is topped with a fluted light poll and glass lamp. The balusters and handrail are formed concrete with fluted Moderne form work. The Riverside-Zoo Drive Bridge historic monument was designed by Bureau of Engineering under the direction of Merill Butler, Engineer of Bridges and Structures for the City of Los Angeles Bureau of Engineering. The bridge was constructed as part of a larger bridge building program (beginning in the mid-

\(^7\) Santa Monica Evening Outlook, “Overpass Will Be Opened Monday: Direct Route to Pier to be Provided Again,” June 12, 1940, p. 7.

\(^8\) Santa Monica Evening Outlook, “Santa Monica Pier in Gala Celebration Tomorrow,” June 12, 1940, p. 13.
1930s and ending in 1943), that oversaw the construction of several bridges across the Los Angeles River funded by the PWA and the WPA.9

With its formed concrete Moderne detailing and classically inspired proportion and symmetry, the Riverside-Zoo Drive exhibits many of the character-defining features of the PWA/WPA style. On the contrary, the Colorado Avenue Viaduct is a very utilitarian example of a PWA/WPA project that used the federal funding, but did not incorporate many of the design elements of the style. The primary character-defining feature of the Colorado Avenue Viaduct that connects it to the PWA/WPA style is its formed reinforced concrete construction, continuous Slab deck that negotiates the difficult grade, the rectangular concrete columns and horizontal bents that support the viaduct, and the commemorative plaque. The utilitarian painted steel baluster and handrails, and lampposts are character-defining features of the bridge, but are not the highly ornate forms commonly associated with the PWA/WPA style. Apart from the structural members, concrete construction, and painted steel baluster, handrails and lampposts, the viaduct does not exhibit other decorative features associated with the PWA/WPA style. However, the Colorado Avenue Viaduct is significant for its engineering as its thin continuous concrete slab deck supported on tall columns which follows the difficult topography of the bluffs as it connects Colorado Avenue to the Santa Monica Pier and traverses the complex transportation nexus at the intersection of Highway 1 and the Santa Monica Pier. Furthermore, it appears that the Colorado Avenue Viaduct is rare type of PWA/WPA bridge. There are approximately 67 bridges built in Los Angeles County during the 1930s, and none of them are similar to the Colorado Avenue Viaduct in either use or design. No other examples of a PWA/WPA viaduct which functions similarly, providing vehicular and pedestrian access from a City roadway onto a pier exists anywhere else in California.

\textbf{Examples and Treatment of Historic Bridges in the Los Angeles Area}

Historic bridges, like historic buildings, are comprised of character-defining features that collectively create the structure’s significance and connection to its historic context. Not all features of a bridge are significant, and not all character-defining features are equally significant.10 For instance, the road surface, sidewalks, and curbs might not contribute to a bridge’s significance, while decorative features and the structural system usually will.

The strategy for appropriate preservation approaches for historic bridges are based on the Secretary of the Interior’s Standards, which recommends preservation of character-
defining features and allows changes that are compatible, reversible, or in kind. In general, retrofitting of bridges that maintains the historic structural system, but adds new members or strengthens the existing members is a compatible change and conforms to the Secretary of the Interior’s Standards. However, the widening of historic bridges is a much more difficult type of bridge improvement that has potential to negatively impact the significance of a historic bridge.

An example of a PWA/WPA bridge in Los Angeles that lost its historic significance after being widened is the Lankershim Boulevard Bridge. This Bridge was determined ineligible for designation as a City of Los Angeles Historic Cultural Monument in 2007 because it had been widened and lacked integrity. Constructed in 1940 and partially funded by the WPA, the reinforced concrete bridge incorporates elements of the PWA/Moderne style. The single arch bridge spans the Los Angeles River in the San Fernando Valley between Toluca Lake and Universal City. Like the Riverside-Zoo Drive Bridge, the Lankershim Bridge has a low wall with concrete balusters and handrails formed with Moderne patterns. Fluted paired pylons border each side of the bridge. The Lankershim Boulevard Bridge historic was designed by Bureau of Engineering under the direction of Merrill Butler, Engineer of Bridges and Structures for the City of Los Angeles Bureau of Engineering. The Bridge was widened and on one side the balusters and handrails were removed. There was an attempt to construct an in kind replacement, but the color and design did not match the original, and therefore its historic significance was lost and it was determined ineligible for the federal, state, or local historic register.11

A proposed project presently under consideration involves widening the Riverside-Zoo Drive Bridge. The proposed project would widen the existing superstructure and other existing elements of the Bridge over the Los Angeles River. The Bridge would be widened 12 feet on each side. In addition to the widening, the abutments and piers would also be seismically retrofitted. Abutment walls would be infilled and new extenders would be constructed. The pier retrofits would be accomplished by drilling and pressure grouting to create additional shear reinforcement within the top 6 feet of the pier walls. The project would also widen the outer lanes on the bridge to provide adequate shoulder width for the safe passage of bicyclists. The six pairs of pylons, the fluted light polls and glass lamps, and the Moderne balusters and handrails will be removed as part of the project.12 The proposed project intends to replicate the removed character-defining features and replace in kind. Although it appears the Office of Historic Resources has not yet reviewed the proposed bridge project for compliance with rehabilitation guidelines for designated Historic Cultural

11 City of Los Angeles Planning Department Staff Report to Cultural Heritage Commission for Lankershim Boulevard Bridge Nomination, 2007.
12 City of Los Angeles Department of Public Works, Initial Study CEQA Report for Riverside-Zoo Drive Bridge, 2007.
Historic Monuments, the Los Angeles Conservancy has determined that widening the bridge would be a negative impact to the bridge and instead suggests a secondary bridge be constructed adjacent to the existing for bike travel across the Los Angeles River.

Another recent historic bridge rehabilitation in Los Angeles was the widening and retrofitting of the First Street Bridge, which is designated as Los Angeles Historic Cultural Monument 909. The First Street Bridge project widened the 1st Street Bridge by approximately 26 feet to the north to accommodate construction and operation of the MTA Goldline along the Bridge’s median. Built in 1929, the reinforced concrete arch/T-beam bridge is one of the most monumental Los Angeles River bridges. Designed in the Beaux-Arts style the Bridge crosses the Los Angeles River between Boyle Heights and Downtown Los Angeles. The First Street Bridge rests on six pairs of vertical piers in an open spandrel arch form and in a T-beam form on several smaller vertical piers. The deck of the Bridge has a sculpted concrete railing with incised rounded arches. Five pairs of square piers support a Classical-style keystone arch with inset panels above, and a simple stepped cap. Eleven pairs of Doric-Style light polls and lamps light the Bridge. The First Street Bridge was designed by Merrill Butler, Engineer of Bridges and Structures for the City of Los Angeles Bureau of Engineering, along with H.P. Cortelyou. The First Street Bridge widening conformed to the Secretary of the Interior’s Standards by removing, storing, rehabilitating, and reinstalling the arched piers, light polls, balusters and handrails on the north side, rather than removing and replacing in kind. Because of the high-quality detailed Beaux-Arts form work, it was determined that replacement would be a negative impact to the significance of the historic bridge and compliance with the Standards required the reinstallation of the character-defining features on the north side of the Bridge.

An alternative approach to bridge widening is construction of a new bridge adjacent to a historic bridge, which allows for continuing use of the historic bridge, and also provides a space for new bridge uses and requirements. A good local example of this approach is the historic Colorado Street Bridge in Pasadena. The historic Colorado Street Bridge, which spans the Arroyo Seco, was retained while a new bridge was constructed adjacent to the historic bridge to handle heavier traffic. The Colorado Bridge was rehabilitated in the 1990s and continues to serve as the Colorado Street thoroughfare across the Arroyo Seco.

Based on existing examples of proposed and completed upgrading to historic bridges, it appears that the retrofitting of bridges that maintains the historic structural system, but adds new members or strengthens the existing members is a compatible change and conforms to the Secretary of the Interior’s Standards. However, successful widening projects of historic bridges have required that character-defining features be retained rather than replaced in

13 City of Los Angles Planning Department Staff Report to Cultural Heritage Commission for First Street Bridge Nomination, 2007.
kind. In general and based on current practice, it appears that a widening of the Colorado Avenue Viaduct, would require maintaining the existing light poles, and balusters and handrails. Finally, a project that rehabilitates a historic bridge and constructs an adjacent bridge to meet increased loads and traffic would also conform to the Secretary of the Interior’s Standards.

In summary, it appears that there are no examples available of specific preservation treatment for PWA/WPA bridges. However, treatment of character-defining features and materials for historic bridges is available in several guides. The *Guidelines for Historic Bridge Rehabilitation and Replacement* produced by the American Association of State Highway and Transportation Officials (AASHTO) is the most highly regarded technical resource among bridge preservationists. The *Guidelines for Historic Bridge Rehabilitation and Replacement* includes tools for determining significance of character-defining features and for specific treatments based on bridge structure type. More general but still helpful published guidelines include the Federal Highways Administration’s “Bridge Preservation Guide,” *Cultural Resource Management* (CRM), Volume 15, No. 2. “Preserving Historic Bridges,” the Oregon Department of Transportation’s *Historic Bridge Preservation Plan*, and Virginia Transportation Research Council’s *Management Plan for Historic Bridges in Virginia*, are also good reference sources. Other states that have completed historic bridge surveys and have published preservation guidelines for historic bridges include Pennsylvania, Illinois, However, California has not developed preservation guidelines for historic bridges to date.

Person(s) of Historical Importance

No persons of historical importance were associated with the Colorado Avenue Viaduct.

Statement of other significance

No other evidence was discovered in current research of the property to indicate other significance.

Is the structure representative of a style in the City that is no longer prevalent?

The Colorado Avenue Viaduct is a representative example of a concrete reinforced PWA/WPA vehicular ramp. Its structure reflects contemporary national advancements in concrete engineering technology and the PWA infrastructure work projects. The Viaduct has not been substantially altered since its construction in 1939 and retains its integrity. Within Santa Monica, the Viaduct is a representative example of a structural type of bridge, which is no longer prevalent in the City and is the only surviving Viaduct of its era built by the PWA.
in Santa Monica. It also appears to be the only example in California of a PWA/WPA viaduct which provides access to a historic pier.

Does the structure contribute to a potential historic district?

The Viaduct contributes to a potential Santa Monica Pier historic district or grouping. The Viaduct was constructed to alleviate traffic congestion due to the popularity of the Santa Monica Pier, recreation, and the economic development of the City of Santa Monica. The Viaduct, Looff Carousel, adjacent buildings, and Santa Monica Pier Sign are a related group of historic resources that contribute to the history of the Santa Monica Pier. Additionally, the Viaduct contributes to a potential multiple property district or grouping of PWA/WPA structures, all constructed in the 1930s, including the Main Street Bridge, City Hall, the SMMUSD WPA buildings such as Barnum Hall, and the Santa Monica Post Office. Finally, the Viaduct contributes to a potential multiple property district of transportation resources in Santa Monica.

CONCLUSION

In summary, based on current research and the above assessment, the Colorado Avenue Viaduct does not meet the City of Santa Monica Landmark criteria as an individual resource, but it does appear to contribute to a district or grouping of Pier, multiple property thematic district of PWA/WPA structures, and thematic transportation resource district/grouping. The property was evaluated according to statutory criteria as follows:

Landmark Criteria

9.36.100(a)(1) It exemplifies, symbolizes, or manifests elements of the cultural, social, economic, political or architectural history of the City.

The Colorado Avenue Viaduct is significant for its engineering as its thin continuous concrete slab deck supported on tall columns follows the topography of the bluffs as it connects Colorado Avenue to the Santa Monica Pier. In applying the City’s significance criteria for individual recognition as a potential City of Santa Monica Landmark the subject property does not possess sufficient historical importance and architectural merit to warrant such designation, however, the Viaduct is a contributor to the economic, architectural/engineering, and cultural history of the Santa Monica Pier and City, as a contributor to a potential district or grouping of Pier and thematic districts/groupings of PWA/WPA structures, and transportation resources.

9.36.100(a)(2) It has aesthetic or artistic interest or value, or other noteworthy interest or value.
The property does not appear to satisfy this criterion. As a highly utilitarian example of its type, it lacks sufficient aesthetic or artistic interest or value necessary for designation.

9.36.100(a)(3) It is identified with historic personages or with important events in local, state or national history.

Historical background research did not reveal any information on the property’s association with important individuals that indicates historical significance or notability. Therefore, the subject property does not appear to satisfy this criterion.

9.36.100(a)(4) It embodies distinguishing architectural characteristics valuable to a study of a period, style, method of construction, or the use of indigenous materials or craftsmanship, or is a unique or rare example of an architectural design, detail or historical type valuable to such a study.

It appears that the Colorado Viaduct is rare type of PWA/WPA bridge. There are approximately 67 bridges built in Los Angeles County during the 1930s, and none of them are similar to the Colorado Avenue Viaduct in function, connecting a City roadway to a historic pier. Additionally, none of them are designed to traverse a steep grade and connect two end points at different elevations. However, the Viaduct’s method of construction, craftsmanship, and architectural/engineering design, detail and bridge type is not singularly significant or valuable to the study of PWA/WPA bridges or 1930s bridge engineers. Therefore, the Viaduct does not appear to meet this criterion.

9.36.100(a)(5) It is a significant or a representative example of the work or product of a notable builder, designer or architect.

Based on current research, the designer, engineer, and/or architect is unknown. Further research is required to uncover original plans or permits. Based on current research the Viaduct does not appear to meet this criterion.

9.36.100(a)(6) It has a unique location, a singular physical characteristic, or is an established and familiar visual feature of a neighborhood, community or the City.

Although the Colorado Avenue Viaduct is located at the entrance to the Santa Monica Pier, the Viaduct is not an identifiable feature of the community and does not have singular physical characteristics worthy of designation under this criterion. The Viaduct has a unique location at the entrance to the Santa Monica Pier, but is not
itself a physically distinctive nor established and familiar visual feature of the City per se. It is visually a part of the pier. Furthermore, the Viaduct is not easily visible from within the City bounds. The only locations where the Viaduct is visible are from the very edge of Palisades Park, and from the off ramp into Santa Monica from Pacific Coast Highway. The Viaduct contributes to the physical appearance of the pier as its eastern most extension, but is not singularly distinctive in and of itself.
BIBLIOGRAPHY

City of Los Angeles Department of Public Works, Initial Study CEQA Report for Riverside-Zoo Drive Bridge, 2007

City of Los Angeles Planning Department Staff Report to Cultural Heritage Commission for First Street Bridge Nomination, 2007.

City of Los Angeles Planning Department Staff Report to Cultural Heritage Commission for Riverside-Zoo Drive Bridge Nomination, 2007.

City of Los Angeles Planning Department Staff Report to Cultural Heritage Commission for Lankershim Bridge Nomination, 2007.

City of Santa Monica. *Historic Resources Inventory Update: Central Business District and the Third Street Promenade*. Prepared by Janet L. Tearnen, M.A., Lauren Weiss Bricker, Ph.D., and Wm. Scott Field, AIA. April 1998.

Ingersoll, Luther A. *Ingersoll’s Century History: Santa Monica Bay Cities.* Los Angeles: Luther A. Ingersoll, 1908.

Jester, Thomas. Cultural Resource Management (CRM) Volume 15, No. 2 “Preserving Historic Bridges.”

Los Angeles County Tax Assessor. Property Information Records.

Colorado Avenue Viaduct
City Landmark Assessment and Evaluation Report
page 16

Oregon Department of Transportation’s *Historic Bridge Preservation Plan,* 2007.

Sanborn Fire Insurance Maps, City of Santa Monica.

Santa Monica Public Library, Santa Monica Index.

Santa Monica Public Library Image Archives.

Santa Monica Evening Outlook, “Scene at Ceremony at Bridge Last Night.” May 27, 1926. p. 1.

Santa Monica Evening Outlook, “Overpass Will Be Opened Monday: Direct Route to Pier to be Provided Again.” June 12, 1940. p. 7.

Santa Monica Evening Outlook, “Santa Monica Pier in Gala Celebration Tomorrow.” June 12, 1940. p. 13.

Santa Monica Evening Outlook, “Sign Presented to City.” June 20, 1941. p. 20.

Colorado Avenue Viaduct
City Landmark Assessment and Evaluation Report
page 17

__________.*Santa Monica Blue Book.* Santa Monica: Cawston, 1941.

__________.*Santa Monica Community Book.* Santa Monica: Cawston, 1944.
ATTACHMENTS

Current Tax Assessor Map

1918 Sanborn Map

1950 Sanborn Map

Historic Images

Current Photographs

Bridge Examples
1918 Sanborn Map
1950 Sanborn Map
Historic Photographs

Opening Day at Santa Monica Pier, September 9, 1909
(James Harris’s Santa Monica Pier: a century on the last great pleasure pier, Santa Monica: Angel City Press, 2009, pg. 16.)
Opening Day at Santa Monica Pier, September 9, 1909
(Santa Monica Public Library Image Archives)
Santa Monica Pier and Surrounding Area, 1924
(Los Angeles Public Library Images)
Santa Monica Pier, circa 1939-1940
(Los Angeles Public Library Images)
Construction of Colorado Avenue Viaduct, circa 1939
(Jeffrey Stanton’s *Santa Monica Pier: a history from 1875 to 1990*, Santa Monica: Donahue Publishing, 1990.)
Newly constructed Viaduct and associated transportation infrastructure, Colorado Grade Separation Project

(Santa Monica Evening Outlook, “Opening of Overpass Marks Completion of Half Million Dollar Highway Link,” June 27, 1940, p. 1.)
Ad for the formal opening day of the Viaduct
(*Santa Monica Evening Outlook*, “Santa Monica Pier in Gala Celebration Tomorrow,” June 12, 1940, p. 13.)
Site Photos

Existing Viaduct deck, view to east

Viaduct, south elevation, view to northeast
Viaduct, south elevation, view to northwest

Viaduct, north elevation, view to southeast
Viaduct, north elevation detail, the intersection of the Viaduct with the Santa Monica Pier, view to south
Viaduct, detail showing structural supports underneath, view west

Viaduct, detail showing structural supports underneath, view east
Viaduct, expansion joint detail underneath

Viaduct, expansion joint detail on deck
Viaduct, pier detail underneath, showing date and bridge number

Plaque detail, view north, “Federal Emergency Administration of Public Works, Colorado Avenue Viaduct, 1939”
Sidewalk stamped with “Intracting Engineers Co, 1940, Los Angeles”
Bridge Examples

Riverside-Zoo Drive WPA Bridge

First Street Bridge Widening